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Preface

The International Conference on Control and Estimation of Distributed Parameter
Systems took place from July 14-20, 1996, at the Bildungshaus Chorherrenstift Vorau
in Vorau (Austria). It was the seventh in a series of conferences that begun in 1982.
51 researchers from 11 states contributed to draw a broad and diverse picture of
the recent developments in optimal control and parameter identification of partial
differential equations, both from a theoretical and numerical viewpoint. We thank
them all for their contributions to an enjoyable and interesting conference.

We address our thanks to the whole staff of the Bildungshaus Chorherrenstift
Vorau. The pleasant atmosphere at the Bildungshaus has been a key ingredient to
the success of the meeting and the stimulating interaction between the participants.
We are particularly indebted to Mrs. L. Reifs, who helped us omnipresently with all
the everyday issues of a conference like this one.

This meeting was facilitated by funding from the following organizations:

Amt der Steiermérkischen Landesregierung,

Bundesministerium fiir Wissenschaft und Verkehr,

Christian Doppler Laboratorium fiir Parameter Identifikation

und Inverse Probleme,

European Research Office of the U.S. Army,

Spezialforschungsbereich F003 “Optimierung und Kontrolle”,

Stadt Graz,

U.S. Air Force European Office of Aerospace Research and Development.

It is our pleasure to acknowledge the generous support by these institutions.

Once again, the friendly and supportive team of Birkh&user, in particular
Dr. T. Hintermann and Mrs. S. Lotrovsky, have provided an optimal opportunity
to publish our proceedings. Our special thanks go to Mrs. G. Krois. Her enthusiasm,
skill and workpower have been the backbone of the organization of the conference and
the preparation of the TEX manuscript of the proceedings you are presently reading.

Graz, July 1997
W. Desch, F. Kappel, K. Kunisch
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Approximation Results for Parameter Estimation
in Nonlinear Elastomers

H.T. BANKS AND GABRIELLA A. PINTER

Center for Research in Scientific Computation
North Carolina State University

Department of Mathematics
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ABSTRACT. In this paper we present an approximation framework and theoretical conver-
gence results for a class of parameter estimation problems for general abstract nonlinear
hyperbolic systems. These systems include as a special case those modeling a large class of
nonlinear elastomers.

1991 Mathematics Subject Classification. 35R30
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1. Introduction

We consider the following class of abstract nonlinear damped parameter dependent
hyperbolic systems evolving in a complex separable Hilbert space H:

(1L.1) wy + A1 (Qw + Az (Q)w; + N g(@) Nw) = f(t;9)
(1.2) w(0) = o
(1-3) wt(o) = ¥1-

Here A;(q), A2(q) are unbounded operators depending on some parameter ¢, g(q) is
a parameter dependent nonlinear operator in H, N is an unbounded operator, and
f is a parameter dependent forcing term. Precise conditions on these operators are
given below.

This class of systems was introduced in [BGS, BLMY] and further studied in
[BLGMY] as a model for the behavior of nonlinear elastomers. These materials,
which are used in the development of active and passive vibration devices, are rub-
ber or polymer based composites that involve complex viscoelastic materials. Their
behavior cannot be adequately modelled using the theory of linear elasticity. Indeed,
they exhibit nonlinearities in material and geometric properties so that there is a
nonlinear relationship between stress and strain even for small strains. We illustrate
with a simple example that takes into account these nonlinearities, and describe the
associated general parameter estimation problems. (For detailed discussions of this
and other models see [BLMY, BGS, BLGMY, BL}.)
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Consider an isotropic, incompressible rubber-like rod under simple elongation with
a finite applied stress in the principal axis direction z; = z. Let w denote deformation
in the z direction. Following the derivation of the model in [BLMY, BGS, BL] we
arrive at the partial differential equation

2w 8 (EAbw 8 (EA_ (6w
(14) P50 " B (?a—) "o (79 (a_)) =

where p is mass density, E is the generalized modulus of elasticity, A is the cross
sectional area, and F is an applied external force. If one assumes that the rod is
composed of a neo-Hookean material (see [BL]), then the nonlinearity § in (1.4) is
given by g(¢) = 1 — (TJ:W for —1 < & < 1. Assuming that we have a slender
rod of length £ that satisfies w(t,0) = w(t,£) = 0, and defining V = HZ(0,£) and
H = L[?*(0,4), we obtain the usual Gelfand triple V < H =~ H* < V* where
V* = H~1(0,£). Then equation (1.4) with the specified boundary conditions can be
written in the variational form:

(1.5) pAwy + Ayw + D*g(Dw) =F  in V¥,

where A; € L(V,V*) is given by

(g, 9y = (D, D)

and D = £ € L(V, H) is the spatial differentiation operator. For a realistic model
we also must include some type of material damping which is known to be present
in elastomers (indeed in all materials). Here we assume an internal damping of the
form Ayw;, where Ay € L(V,,Vy) and V' — V, < H. In the case of Kelvin-Voigt
damping we define Vo =V = H}(0,£) and

(Ao, ¥)vzvs = (cp Do, D)y,

where cp € Loo(0, £). (We remark that the exact form of the damping mechanism in
elastomers is not known and, indeed, is the subject of current research.) With the
damping included, we find that our model in variational form for the neo-Hookean
elastomer rod is given by

(1.6) pAwy + Ajw + Asw; + D*§(Dw) =F  in V™.

If this model is to be used for simulation or control of the behavior of the elastomer
rod we need values for p, F, A, cp, F,£. Some of these can be given or measured ex-
plicitly (e.g., A,¢, F), or can be found from manufacturers specifications (so-called
“book-values”). However, some parameters (e.g., E, cp) cannot be measured or ob-
tained this way. Also, the “book-values” can vary considerably between samples.
Thus we need a method to estimate these “unknown” parameters by dynamic exper-
iments with the sample itself. Moreover, the nonlinearity g is in general unknown
and must be estimated (the neo-Hookean assumption is only a first approximation to
actual material properties) or chosen from a general class of admissible nonlinearities.

In one general parameter estimation formulation equation (1.6) takes the form
(1.1)—(1.3) where the structural operators .A;,.A;, the nonlinearity g and the input
f have all been parameterized by a vector (possibly infinite dimensional) parameter
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q that must be estimated. Here the parameter g takes values from an admissible
parameter set (). Suppose that we have a set of measured observations z = {z;}X,
corresponding to measurements (e.g., displacements, velocities) taken at time ¢;. In
a general least squares parameter estimation problem, we seek to minimize the least
squares output functional

J(9,2) = G2 {Culuw(ts )} — (=3}

over g € Q, where {w(t;,-;q)} are the parameter dependent solutions of (1.1)-(1.3)
evaluated at time #;,4 = 1,2,... K, and | - | is an appropriately chosen Euclidean
norm. The operators Cy,C; depend on the type of the collected data. For example,
if z; is time domain displacement, velocity or acceleration at a point z, then C}
involves differentiation (0,1 or 2 times, respectively) with respect to time followed
by pointwise evaluation in ¢ and x. The operator C; is the identity in the case of
time domain identification, while it is related to the Fourier transform if we consider
fitting the data in the frequency domain (see Chapter 5 of [BSW] for details).

In this formulation the minimization problem involves an infinite dimensional state
space and (in general) an infinite dimensional admissible parameter set Q. To over-
come this difficulty and to obtain a computationally tractable method, we use the
general ideas described in [BSW]. Namely, let H be finite dimensional subspaces of
H, and QM be a sequence of finite dimensional sets approximating the parameter set
Q. Denote the orthogonal projections of H onto HY by PY. One can formulate a
family of approximating estimation problems with finite dimensional state spaces and
finite dimensional parameter sets in the following way: find ¢ € Q™ which minimizes

(1.7) TN(g,2) = |Co {Cr{w™ (t:, 5 9)} - {Zi}}yz s

where w™ (¢; q) € HY is the solution to the finite dimensional approximation of (1.1)-
(1.3) given by:

(1.8) (wi,d)vy + (Ai(@)w", ghve v + (A, )vz v, + (9(Nw™), N'g)
= (f(59), 8y va

(1.9) w™(0) = PYgo, w'(0) = PV,

for all o € HV.

Solution of these approximate estimation problems (1.7)—(1.9) provides one with
a sequence of parameter estimates {g""*}. The crucial question is when one can
guarantee that this sequence (or some subsequence) converges to a solution of the
original infinite dimensional parameter estimation problem. Under certain suitable
assumptions on the approximating spaces H" and approximating sets Q™ this ques-
tion is answered in [BSW] for linear systems and here we extend these ideas to include
nonlinear systems.

To permit use of the method outlined above we must be certain that the above
systems (1.1)—(1.3) and (1.8)—(1.9) have solutions in some sense for each ¢ € Q.
This well-posedness problem (without considering the parameter dependent case)
was solved in the recent paper [BGS]. In the following section we summarize these
results and give precise conditions under which (1.1)—(1.3) has a unique weak solution
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for each ¢ € Q. Then in Section 3 we give assumptions on the general parameter
estimation problem that we shall use to prove convergence. We also recall Theorem
5.1 from [BSW)] that provides a sufficient condition for the convergence of the solutions
{@""M} of the approximate estimation problems to a solution of the original parameter
estimation problem. Then in Section 4 we show that this condition is satisfied in our
case under natural assumptions on the parameter dependence of A;, Az, g and f.

2. Formulation of the Problem

We assume that there is a sequence of separable Hilbert spaces V, Vo, H, V*, V
forming a Gelfand quintuple [BIW, W1] satisfying

(2.1) Ve Vo Ho Ve —VE

where we assume that the embedding V < V5 is dense and continuous with |ply, <
clely for ¢ € V and V3 — H is a dense compact embedding with || < &lp|v;. The
norm in H will be denoted by | - | while those in V, V; ete. will carry an appropriate
subscript. We denote by ( , )y-y, etc., the usual duality products [W]]. These
duality products are the extensions by continuity of the inner product in H, denoted
by (, ) throughout. Let @ be an infinite dimensional parameter set. The operators
Ai(g) and Ay(g) are defined in terms of their sesquilinear forms o1(g) : V x V —
C and 0s(q) : Vo x Va — C. That is, Ai(q) € L(V,V*), Ax(q) € L(V,V5) and

(Ai(@)p, vy = a1(@) (0, ¥), (A2, Y)vyvs = 02(0) (0, %)
Let L7 denote the space of functions w : [0,T] — H such that

w € Cw([0,T], V=) N L=([0,T], V)
(the subscript W denotes weak continuity), and
w; € Cw ([0, T], H) N L*([0, T, Va),

where the time derivative w; is understood in the sense of distributions with values
in a Hilbert Space (see, e.g., [Lil]). The space Lr is equipped with the norm

T 1/2
(2.2) |wlz, = esstzgé%] (lw:(®)] + [w(t)]v) + (/0 |wt(t)|V2dt) )

Definition 2.1. We say that w € Ly is a weak solution of the problem (1.1)-(1.3)
if it satisfies the equation:

[ [— (0,7, 1(7)) + 73(2) (w(P)s (7)) + 02(a) (w1 (), ()
(23) + (glg) W) Wn(ﬂ)] dr + (wi(®), (1))

13
= (o1 1O) + [ (F(i0),n(r))vs
for any t € [0,T] and any n € Lr, as well as the initial condition

(2.4) w(0) = o.
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Equivalently, w is a weak solution if
(2.5)  (wie, n)v~v+o1(g)(w,n)+02(q) (we, ) +{g(@Q N w), Ny = (£(2), vy v,
is satisfied for all n € L and for almost all ¢t € [0, T].

To establish our parameter estimation convergence results, we first make the fol-
lowing assumptions (these assumptions are the same as in [BGS] except that here
we require them to be satisfied uniformly for all ¢ € Q) which will guarantee well-

" posedness for all ¢ € Q.

A1) The form 01(q) is a Hermitian sesquilinear form: for ¢,9 € V

(2:6) a1(0)(p, %) = 01(q)(%h, ) for every g€ Q.
A2) The form o1(q) is V bounded: for ¢, € V
(2.7) o () (e, %) < alplvlply for every g€ Q.

A3) The form o1(g) is strictly V coercive: for p € V

(2.8) Reoy(q)(0, ) = 01(a) (0, 9) 2 kulely, k>0
for every ¢ € Q.
A4) The form o5(g) is V2 bounded: for p,% € V2

(2.9) |o2(q) (0, ¥)] < c2lplsl¥ply, for every g€ Q.

A5) The real part of 03(q) is V; coercive and is symmetric:

(2.10) Reos(q)(0,0) + Xolp® > kalpli, k2> 0,220

(2.11) Reay(q)(p, %) = Reoz(q)(¥, ), for any ¢, 9 € V2,0 €Q.

A6) The forcing term f(q) satisfies f € L*([0, T, V5") for every g € Q.
A7) The operator N satisfies

(2.12) N € L(Vy, H) with No| < VE ey,

and the range of A on V is dense in H.
Note that (2.12) and V < V; implies

(2.13) N e L(V,H) with |Ny| < VE|g|v

with k = k.

A8) The nonlinear function g(g) : H — H is a continuous nonlinear mapping of real
gradient (or potential) type. This means that there exists a continuous Frechet-
differentiable nonlinear functional G(g) : H — R, whose Frechet derivative

G'(q)(p) € L(H,R") at any ¢ € H can be represented in the form

(2.14) G'(9)(p)¢ = Relg(a)(p),¥) forany ¢ € H.
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We also require that there are constants C, Cs, Cs and € > 0 such that

(2.15) - -;—k'l(kl —&)lpl? — C1 < Gl)() < Calol® + G,

for every ¢ € Q, where k is from (2.13) and k; from (2.8).

A9) The nonlinear function g(q) also satisfies
(2.16) 9(@)(@)| < Cill+ Gy, ¢ € H,

for every g € @, for some constants Ci, Cs.

An additional condition is necessary for uniqueness of solutions.

A10) For any ¢ € H the Frechet derivative of g{q) exists and satisfies
(217)  g'(a)(p) € L(H, H) with |¢'(q)(¢)|car,y < C5 for every g€ Q.

A11) We assume that for any u,v € Lr, the following inequality is satisfied for any

tel0,T],q € @
[ { RetolayWu() — o)) Wo(r), Nutr) — No(r)
(2.18) + kb N u(r) — Nu(»r)|2} dt

ta ((/Ot lu(r) — v(r)? dt) 1/2) >0,

where a(£) > 0 is a continuous function in £ > 0 such that
i) a(0) =0,

ii) there exists a first derivative such that a’(0) = 0.

Note that (2.18) is satisfied if, for example,

(2.19) Re(g(a)(¢) — 9(@) (), 0 — ¥} + kik o — 9> > 0

for any ,v € H, where k and k; are the constants in (2.8) and (2.13). Thus
if H=L*(Q), & C R™, so that g(g) : R — R, then a sufficient condition for
(2.19) is that ¢'(¢)(§) > —!ly for some [; > 0.

In [BGS] it is shown that

Theorem 2.1. Under conditions A1)-A11) the system (1.1)-(1.3) has a unique weak
solution w € L -for every initial condition (o, 1) € V x H. The weak solution
satisfies

(2:20) (ws, Myv+ v +01(q)(w, n)+02(g) (we, n)+(g(@) Nw), Nn)=(f(a), mvz v

for alln € L7,q € Q and for almost all t € [0,T]. Also, w € Cw([0,T7],V2), w; €
Cw([0,T), H) and the weak solution depends continuously on initial conditions.
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3. The General Parameter Estimation Problem

Assume that we have a set of observations z = {z;}X, corresponding to measure-
ments taken at time ¢;. As stated in the Introduction we would like to find a solution
for the least squares minimization problem, i.e., find ¢ € @ that minimizes

(3.1) J(0,2) = |G {Cu{w(ti 5 0)} — {=i}}

where {w(¢;,;¢q)} are the parameter dependent solutions of (1.1)-(1.3) evaluated at
time ¢;,7 = 1,2,... K. To this end, we consider Galerkin type approximations to
(1.1)—(1.3) and define a family of approximating parameter estimation problems.
Let HY be finite dimensional subspaces of H and let @ be finite dimensional sets
approximating (in a sense to be made precise below) the parameter set Q. Let PN
denote the orthogonal projections of H onto HY. Then the approximate parameter
estimation problems can be stated in the following way: find ¢ € Q¥ that minimizes

(3.2) IN(g,2) = |G {Cr{w™ (5 90} - {ai}}
where w™ (¢;¢) € HY is the solution to the finite dimensional approximation of (1.1)—
(1.3) given by (1.8)—(1.9).
We make the following assumptions for the spaces H" and H and the sets Q™
and @ (see [BSW]).
B1) The sets @ and @™ lie in a metric space @ with metric d. We assume that Q and
Q™ are compact in this metric and there is a mapping i : @ — Q™ such that
QM = iM(Q). Also, for each ¢ € Q, i¥(g) — ¢ in Q with the convergence
uniform in q € Q.
B2) The finite dimensional subspaces H satisfy HY C V.
B3) For each ¢ € V, |[¢p — PYyply — 0 as N — co.
B4) For each 9 € Va, [¢p — PNely, — 0 as N — oo.
We also assume that A, 4y, ¢, f depend continuously on the parameter ¢ € @,
i.e., they satisfy the following conditions:
C]') |01(q)(¢7¢) - al(d)(¢7 7/1)| < Wld(qaq)[¢|V|¢|Va for every ¢>¢ evV.
C2) |o2(a)(&:m) — 02(D) (€ M| < 12d(g, DIEhelnlve, for every £, € Va.
C3) 19(q)(#) — 9(9) ()| < 13d(g, @)|¢| for all ¢ € H.
C4) The mapping ¢ — f(-;q) is continuous from @ to L2([0, T}, Vy).
Under conditions A1)-A11), B1), C1)-C4) we know that a solution {g"M} to
the approximate parameter estimation problem (1.7)-(1.9) and a solution g to the

original parameter estimation problem for (3.1) exist. A general sufficient condition
for the convergence of {g"'*} to q is given in Theorem 5.1 of [BSW] (see also [BK]):

2
)

2
)

Theorem 3.1. To obtain convergence of at least a subsequence of {7} to a solution
g of minimizing (3.1) subject to (1.1)-(1.3), it suffices, under assumption B1), to
argue that for arbitrary sequences {gV"™} in QM with ¢™M — q € Q, we have

(33) C‘géle(t; qN’M) — égéﬂl)(t, q)
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4. Convergence Results

In this section we show that under our general conditions given above, the con-
vergence criteria (3.3) of Theorem 3.1 holds for a reasonable class of observation -
operators C1, Cs.

Theorem 4.1. Suppose that assumptions A1)-A11), B1)-B4) and C1)-C4) are sat-
isfied. Let ¢V be arbitrary in QN such that ¢¥ — q € Q as N — oo. Then we
have

wN(t,q") — w(t,q) inV, forallt >0
and

w (t,q") — wi(t,q) in H for allt >0 and in V; for almost all t >0,

N

where w™, wl satisfy

(N (2), )y + o2(g™) W (), 8) + o1(a) (W™ (1), 8) + (9" )N w™), N¢)
= (f(t7 qN)7 ¢)‘/2*,V?
(4.1) wN(0) = PNgo, w'(0) = PV

for all $ € HY, and w,w; satisfy

(wy(t), P)v=v + 02(q) (ws(£), §) + o1(q) (w(t), ) + (9(g) Nw), N'¢)
= (f(t, ), vy e
(42) w(0) = @o , w:(0) = 1

foraloeV.

Proof: We know that w(t) € V, we(t) € H for all t > 0 and w;(t) € V, for almost all
t > 0. By the triangle inequality

¥ (t,¢") — wt,g)lv < [w(t,q") — PYw(t,9lv + [P w(t, 9) —w(t glv-

By assumption B3) the second term on the right side goes to 0 as N — co. So to
prove our statement about w™¥ (¢, ¢") it is enough to show that the first term on the
right side also goes to 0 as N — oco. Similarly,

|wiv(t’ qN) - wt(t)q)le < IwiN(tan) - PNwt(t7Q)|V2 + IPNwt(taq) - wt(t7Q)|V2'

The last term again goes to 0 by B4), so to prove our statement it is enough to show
that the first term also converges to zero.
Let us introduce the following notation:

wN =wh(t,¢"), w=w(t,q and AV =w"(t, ) — PNuw(t,q).
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Then

d
AN =wl ~ ZZZPNU) wy — PNy,

N_,N_ PN
Ay = wy — ?iﬁp w
since w; € L*([0, ], Va).
From (4.1) and (4.2) we have that for every ¢ € H:

&?
<Ag7?/1)v*,v = (wil’ = Wy + Wy — pre PNUJ P vy

= (@), ¥)vyva — 02(a™) (), ¥) — o1 (g") (W™, ¥)
— {g(@"INW , NY) — (£(0), Vhvpvs + U2(Q)(wta ¥) + o1(q) (w, ¥)

+ (g(@QNw, NY) + (wy —

(4.3)
d2

@P N, p)vev
By adding and subtracting we obtain for all ¢ € HY

a2 N
—dt_2P ’W,'Iﬁ)V*,V

(AN, Vv w + 01(gV) (AN, 9) = (wy —
—(f(@) = F@"), Vv
(44 + 020" ) (we = PM i, ) + 03(0) (w0, 9) — 020" (wi, )
+01(g")(w — PN w,9) + 01(g) (w, %) — o1(¢" ) (w, %)
— aa(g") (AL, 9) + (g(QNw, N9p) — (g(g")NwY, N).
We may choose i = A} since AY € HVN. Then (AN, ANM)y.y = 14|AN. Asin
[BSW] we find:

d d2
= ((AYT + o1 (@)AY, A%) =2 Re {(wa — 5 PYw, AY)v-y

—(f(@) = f(@), A vz s

(4.5) + 0a(q™) (we — PNwy, AY) + 05(g)(wr, AY) = 02(¢" )y, AY)
+01(q")(w — PYw, A) + 01(g)(w, AY) — 01(¢V) (w, AT)

— oa(g™) (AN, AY) + (g(@Nw, NAY) — (g(a" )N w" NAY)}.

We denote the left side of (4.5) by L(t) and the right side by R(t). Integrating L
from 0 to t, using initial conditions

AN (0) = w" (0) = PMw(0) = w" (0) — PNy =0

and
AY(0) = wy' (0) = PYwy(0) = w;'(0) — PYepy =0,
along with A3), we have

t
(4.6) /0 L(s)ds > |AN | + k; |AN 2.



10 Approzimation Results for Parameter Estimation in Nonlinear Elastomers

We next argue that
1 - 1
(47) [ B)ds < w8 (©) + i [[ 1A + kAN s,

where 6¥(t) — 0 as N — oo and p1, p2 are positive constants. Then by Gronwall’s
inequality we obtain that

EJAN (@)% + |AN ()| — 0 as N — oo for each ¢ > 0,

which implies the desired results.
Proceeding as in [BSW], we have that

t t
/ R(s)ds < 6" (t) + ve / IAN, + kAN 2ds
0

(4.8) °° .
+2Re [ (9N w, NAY) — {g(a"WNu®, NAL)) ds
where

‘ &
6°(t) = [ Ref{(wu— gzPNw, AV)vey +11(a) = 1)l
(4.9) + Elwy — PNyl + 12 (g, M)lwil?,
+ colw — PNw|? +~+2d%(q, g™ |w|%/}d5,

and 8¥(t) — 0 as N — oo by (5.18) of [BSW], B3), B4), properties of w,w; and
assumptions of the theorem. Finally, we need to show that the last integral containing
the terms involving ¢ can also be estimated from above by an expression similar to
the right side of (4.7). We may argue

| [N, NAY) ~ (ol INw®, N AY)ds]
<| / (@Nw—g(g" N, NAY) + (g(a™)Nw—g(g")Nw N AY) ds
(410) < 3 [ (Ad*(q, ¢ + KIAT)ds
1 [ (6w = 9@ NP, NAY)ds
+] / MNPV w — g(g")Nw™, NAN)ds|.

Now the first integral on the right is dominated by the right side of (4.7) (with suitably
chosen constants). To estimate the last two integrals we use the same method as in
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[BGS]. We have
| / MNw — g(g" )N PNw, NANYds|

| / / 7 (ONw(s)+ (1—8)N PMw(s)) [Nw(s)—N PNw(s)|dd, N AN)ds|
(4.11)
</C3|Nw ~NP¥ [|NAN|ds<2/ (C2Nw—NP wl+|N AV [?)ds

< §k/0 C2lw — PNw|%ds + ék/o |AN} ds.

Here the first term in the last expression goes to 0 as N — oo by B3) and properties of
w, while the second is dominated by second term on the right side of (4.7). Similarly,

] MNPNw — g(q )NwNNAN>ds|
(4.12) °
< gk / CRIPYw — W™} + A ds < 5k [ CHAN + |AY B

which again is dominated by the right side of (4.7). This completes the required
arguments. O

We note that the above theorem gives a computationally tractable method to
solve the parameter estimation problem involving (3.1) in case the data collected
consists of displacement or velocity measurements, i.e., C is either the identity or
differentiation with respect to time once followed by evaluation in ¢ and z. However,
the case of accelerometer data is more complicated, since then Theorem 3.1 requires
wh (t;¢N) — wy(t;q) in V* for ¢ € [0,T]. We will now give conditions under which
this convergence can be obtained.

Let us suppose that V; = V, i.e., we have strong damping, such as Kelvin-Voigt
damping in the example given in the Introduction. We can formulate the system
(1.1)—(1.3) in variational form (4.2) and rewrite it in first order vector form on H =

V x H in the coordinates
(2)=(a)
z= = .
29 Wy

We define V=V xVand 0(q) : ¥V x ¥V — C by

@ ((§): () =t +oen +aom:

n
Then (4.2) can be rewritten as
(4.13) (2, @) + 0(q)(2,®) = (F(q), D) foral ® € V
Yo
4.14 0) =
(4:14) 0=(2),
where

F(g) = ( £(q) —N’Pg(q)(/\/zl) )
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We can also write this in the equivalent operator form (not distinguishing between
row and column vectors):

(4.15) z = Alg)z + F(q)
(4.16) 2®)=<£f)

where o(q)(®, ¥) = (—A(q)®, ¥)y- v with

M®={_£@)—é@J'

It is shown in [BIW, BSW] that if V' = V5, then A(q) generates an analytic semigroup
S(t;q) on V* = V x V*. Then the weak solution of (1.1)—(1.3) can be represented in
the form:

w(t; q) ©o /t
4.17 tiq) = = 5(t; St — 71, F(r;q)dr.
a1 sa = (o9 ) = st &)+ [se-roreasn
Lettlng HN = HN x HY, we can restrict o(q) to HY x HY, denote this restriction
by oV and define AV (g ) HN — HN by (AV(q)®,¥) = oV (D, T) for all B,V €
HY x HV. Then AV generates an analytic semigroup SV (¢; g) on H". Solutlons of
(1.8)—(1. 9) can then be represented as:

(4.18) 2Mt;9)= (:Z;g:gg) =SN(t; q)(lijSD()) —I—/SN (t—7;q) PV F(r; q)dr,

PVNF,

PN . v* — HY is the generalized projection (in the sense of the duality product).
We can then use the theory developed in [BR] to obtain 2{¥(t;¢") — 2(t;¢) when
¢" — g. Note that this will guarantee that wf) (¢; ") — wu(t;q) in V* for t € [0,T]
(which is what we desired). According to Theorem 3.1, 3.2 in [BR] and the remarks
following them, this convergence is guaranteed if we can argue convergence of (4.18)
to (4.17) after differentiation of these terms with respect to time. Since we have
analytic semigroups we obtain this property if F(q) € L*([0,T],V*) (i.e., pointwise
defined and bounded V* valued functions) and PNy — ¢ in V*. Thus, we can state
the following theorem:

Theorem 4.2. Let V =V, and f(q) € L®([0,T],V*) in the system (1.1)-(1.3). Let
A1)-A11), B1)-B4), C1)- 04) hold. Morover, assume that PNy — ¢ in V* for
© € V*. Then for any ¢¥ — q € Q we have wi (t;q") — wyu(t;q) in V* for
te[0,T].

Proof: Using the arguments in [BR] with (4.17), 4.18 we only need to argue that
f(;9) — N*g(@)(N'z) € L([0,T],V*). But this follows from the fact that f(g) €
L°°([O,T],V*) z=w € Cw([0,T),Va) and N € L(V5, H). O

Acknowledgement: This research was supported in part by the Air Force Office of
Scientific Research under grant AFOSR F49620-95-1-0236.

N
where PV F is understood to mean ( P ) if F, are the components of F and
(
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ABSTRACT. In this paper preconditioners for linear systems arising in interior—point meth-
ods for the solution of distributed control problems are derived and analyzed. The matrices
K in these systems have a block structure with blocks obtained from the discretization of
the objective function and the governing differential equation. The preconditioners have a
block structure with blocks being composed of preconditioners for the subblocks of the sys-
tem matrix K. The effectiveness of the preconditioners is analyzed and numerical examples
for an elliptic model problem are shown.
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1. Introduction

The discretization of distributed linear quadratic optimal control problems with
bound constraints on the controls and on the states leads to large scale quadratic
programming problems. Because of their complexity and convergence properties,
interior point methods are attractive solvers for such problems. They are iterative
methods which in each iteration generate approximations to solutions that are strictly
feasible with respect to the bound constraints. Within each iteration, large indefi-
nite linear systems have to be solved. If interior point methods are applied to linear
quadratic control problems governed by partial differential equations, then iterative
techniques usually have to be applied to solve these linear systems. To make inte-
rior point methods efficient, it is important to solve these linear systems efficiently.
Krylov subspace methods are iterative linear system solvers, which are very suitable
in this context. They do not require the system matrix in explicit form, but only
require matrix vector multiplications. This is very useful since for the problems under
investigation the system matrices have a block structure in which blocks are related
to discretized differential equations. The convergence of Krylov subspace methods
depends on the distribution of the eigenvalues of the system matrix. Roughly speak-

*This author was supported by the NSF DMS-9403699, AFOSR F49620-93-1-0280, and in part
by the DoE DE-FG03-95ER25257.

Preceding Page Blank
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ing, their convergence is the better the more the eigenvalues of the system matrix
are clustered and the smaller the clusters are. Ill-conditioning of the matrix, i.e. a
large quotient of largest absolute eigenvalue divided by smallest absolute eigenvalue,
typically corresponds to a poor convergence of Krylov subspace methods. To improve
the convergence of these methods nonsingular matrices are constructed so that the
similarity transformation with these matrices leads to a system with better clustered
eigenvalues. These matrices are called preconditioners. The purpose of this paper is
the construction of such preconditioners for systems arising in interior—point methods
for certain distributed control problems.
To illustrate the issues, we consider the following elliptic model problem.

1
(1.1) min 5 [ (u(@) ~ @)? + 3 [ e()ds
over all (y,u) satisfying the state equation

—Ay(z)+yx) = flz) z€9

(1.2) 20y = uz) zed9

and the bound constraints

Yiow < y(x) < Yupp a.e.,

1.3
() Uow S U(T) < Uypp  2-€.

A discretization of the problem with, say, finite elements, leads to a quadratic pro-
gramming problem of the form

L1
(1.4) min 5:‘/1’{Myyh + %UZMuuh + Ty + dTup
subject to
(15) Ayh =+ B’u,h = b’

Ynjow = Yn < Yhupp

(1.6)
Up,low S Up, S Uh,upp-

Here h indicates the mesh size of the discretization and u, € R™, y, € R™ represent
the discretized controls and states, respectively. The matrices M, € R™*™ and
M, € R™>™ are positive definite. The vectors yniow, - - , Unupp 8T€ obtained from
the bound constraints (1.3) in a straightforward way.

There are various classes of interior point methods. They all (after possible trans-
formations) require the solution of linear systems with system matrices

H, 0 AT
(1.7) K= o H, BT |,
A B 0

where

(1.8) H,=M,+ Dy, H,=vM,+ Dy,
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with some positive semidefinite diagonal matrices D, and D,. Since the matrix K
is related to matrices arising in the Karush-Kuhn—Tucker optimality conditions, we
call K a Karush-Kuhn—Tucker (KKT) matrix.

Even though the exact form of the diagonal matrices D, and D, differs from interior
point method to interior point method, they all have in common that diagonals of
D, and D, grow unbounded if the corresponding components of y; or u; converge
towards a bound.

The matrices K arising in interior—point methods for the solution of problems like
(1.1)—(1.3) are usually ill-conditioned. There are at least two sources for the ill-
conditioning. One source is the discretization of the infinite dimensional problem.
Typically, the eigenvalues of K spread out towards zero if the discretization is refined.
The second source are the large diagonals in D, and D, that arise if variables ap-
proach the bound. This source is due to the interior—point method. Ill-conditioning
also arises if the original infinite dimensional problem is ill-posed. The precondi-
tioners derived in this paper are designed to remedy the ill-conditioning arising from
the first two sources. They use the block structure of K and are composed of pre-
conditioners for the blocks M,, M,, and A of K. This allows the use of known
preconditioners for the governing differential equations. Moreover, computationally
expensive parts of the preconditioner have to be computed only once during the
interior—point method, since only the diagonal contributions D, and D, change from
one interior—point iteration to another.

Preconditioners for problems related to this one are investigated in other papers.
There are several papers, e.g. [5], [15], [17], investigating preconditioners for systems
arising in the numerical solution of partial differential equations such as the Stokes
equations, or the biharmonic equation. These systems can also be viewed as KKT
systems. However, the blocks in those matrices are different and, therefore, the
preconditioners for those problems are different than the ones introduced here. In
fact, if the governing equations would be the Stokes equations, or the biharmonic
equation, then the preconditioners in the papers cited above could be used as blocks
in the preconditioners introduced here. Some of the tools provided in those papers,
in particular a result from [15], ¢f. Lemma 5.1, are heavily used in our analysis.
Preconditioners for interior—point methods for linear programs (LP) are investigated
in [9], [10]. Those preconditioners are for general LPs and are based on sparse matrix
factorizations or on the SOR method. Since no particular structure is assumed, those
papers do not contain any theoretical result on the quality of the preconditioner.

This paper is organized as follows. In the first part we study the QP problem. Sec-
tion 2 investigates the problem (1.1)—(1.3) and its discretization. The Sections 3 and 4
discuss the optimality conditions for the QP (1.4)—(1.6) and some aspects of interior—
point methods relevant for the construction of preconditioners. Section 5 contains
some essential results about the Krylov subspace methods MINRES and SYMMLQ.
The preconditioners are introduced and analyzed in Section 6. This section also
contains some numerical tests demonstrating the quality of the preconditioners.
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2. The Control Problem

As noted in the introduction, one source of ill-conditioning in the KKT matrix
is the discretization of the infinite dimensional problem. This section provides some
results needed to address this aspect of the problem. These results can be proven for
a general class of problems, which include the model problem (1.1)—(1.3) as a special
case. In this section we do not consider the control or the state constraints.

2.1. The Abstract Problem. Let ) and U be Hilbert spaces. These spaces play the
role of the state and the control space, respectively. Moreover, let a, b be continuous
bilinear forms on Y x YV and U x Y, respectively. In addition, we assume that a is
Y-elliptic. In particular, there exist constants & > 0 and 8 > 0 with

allyl < aly,y), bw,y) < Bllulullyly, Yy eV, uel.

Furthermore, let Z be a Hilbert space and C € £(Y, Z). In particular there exists
¢ > 0 such that
ICyllz <(llylly Vyel.

With some linear functional [ on Y we consider the problem

. 1
(2.1) min  ZlCy = zll% + Zlull,
(2.2) st.  a(y,v) +blu,v) =1lv) YWwe).

Results on the existence of solutions for problems like (2.1), (2.2) are given e.g. in
[1], [13] and we refer to those books.
We consider the following discretizations. Let

Yo =span{¢y,... ,¢n,} CV, Un= span{®y,... ,¥n,} CU,
and define matrices A € R»*™ and B € R™*"™ by
Aij = a(¢ja¢i)7 ZaJ:17 y Ty
BZJ = b(¢]>¢z)7 j:1,...,’ﬂu, i=17'~-7ny,
and matrices M, € R™*™ and M, € R™*™ by
(My)ij = <C¢jic¢i>2? 7‘7.7 = 17 coe oy Ty,
(M’U)ij <¢ja 1/)1'>1/la 7/;.7 = 1) cee s Ty

Obviously,
Ty Ny
YEMyun = | S yniCoill%,  up Muun = || > wnithills-
i=1 =1

In particular, the matrix M, is positive definite and the matrix M, is positive semidef-
inite. '

By ||-|| we denote the Euclidean norm in R* for some k. We can show the following
simple, but important result.

Lemma 2.1. There exists a constant ¢ > 0, independent of the discretization param-
eter h, such that

| M}2PAT'BM,V?| < c.
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Proof. Let uy, # 0 be arbitrary and set y, = A~'BM; 2wy, iy, = M;"/?u;,. Define
Y = ity Yni¢s and @ = Y7 Gt By definition of A and B, a(y, ¢:) = b(%, ¢:),
i=1,...,n,. Hence,

allyl} < aly,y) = b(@,y) < Blafulyly-
This implies

IMy2PA BM Pu® - [IMyPunl® _ iCylZ
llun? flus? [l 12
Cllgly,  _ Cluly o ¢
=M ) lalg, = o

2.2. The Model Problem. The model problem (1.1)—(1.3) fits into the above frame-
work, if we use the weak formulation of (1.2). The Hilbert spaces are Y = H'(Q),
U = L2(9), and Z = L*(Q). The bilinear forms and the functional are a(y,v) =
Jo Vy(2)Vu(z) + y(z)v(z)dz, b(u,v) = — foq u(z)v(z)dz, and I(v) = [, f(z)v(z)dz.
The operator C is the imbedding operator. For our discretization we use a finite el-
ement discretization with piecewise linear functions over triangles. In our numerical
experiments we use 2 = (0,1)% and we construct the triangulation as follows: The
z— and y— intervals are subdivided into d, and d, subintervals. The resulting rect-
angles are subdivided into two triangles by connecting the lower left corner and the
upper right corner of the rectangle. Since piecewise linear approximations are used,
the number of state variables is n, = (d, + 1)(d, + 1) and the number of controls is
Ny = 2(dy + dy).

3. The Quadratic Programming Problem

We consider the following quadratic programming problem (QP) in standard form:

6 e (1) (2 ) (0)4(5)(4)

subject to
(3.2) Ay + Bu = b,
(3.3) y>0,u>0.

In this section the origin of the QP is not important and we omit the subscript A.
Moreover, we absorb v into M,,,. The standard form (3.1)—(3.3) is considered to re-
duce the complexity of notation. Using straightforward extensions, bound constraints
of the form (1.6) can be handled as well. Throughout this section we use the notation

_ [ My My _{ ¢ _ _{ ¥ _ | %
M—<Muy Muu 3 g_‘ d I C"(A|B)7 T = U » Q" qu .

We limit our discussion to convex problems and assume that M is positive semidef-
inite. The existence of solutions of the QP (3.1)—(3.3) is guaranteed if the objective
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function is bounded from below on the set of feasible points. More precisely, we have
the following well-known result (e.g. [6, § 12.3]):

Theorem 3.1 (Necessary and Sufficient Optimality Conditions). If M is positive
semidefinite and if g(z) = 337 Mz + g%z is bounded from below on the set of feasible
points {(y,u)|Ay+Bu =b, y > 0,u > 0}, then the QP (3.1)-(3.3) admits a solution
z,. If M is positive definite, the QP admits a unique solution.

The vector (y,u) is a solution of (3.1)-(3.3) if and only if there exist p € R™,
g, € R™, and g, € R™ such that the Karush-Kuhn-Tucker (KKT) conditions

|
!
8

Myy + Myu+ ATp — g,
Myy + Myu+ BTp—q,
Ay + Bu

y"gy +uTq,

Qy, Qu

y,u

|
|
H

(3.4)

VIV I

are satisfied.

To learn more about the QP and the optimality system (3.4) it will be helpful to
distinguish three cases. This discussion will also help us to relate the results in this
paper to the results on the solution of KKT systems in interior-point methods for
linear programming that can be found in the literature, see e.g. [10].

Throughout this subsection we assume that A is nonsingular and that the QP has
a solution. As a consequence, the matrix C' = (A | B) has full row rank and the
KKT system (3.4) has a solution.

Bound constraints for u and y. Let (y.,u.) be a solution of the QP. Further-
more, let {I¢,... I } and {If,... [} } denote the set of active indices for u. and y.,
respectively,

.y = )i =0} {1} = {i] (3.): = 0}
The Lagrange multipliers at the solution satisfy
(g):=0,9¢{lf,....5{,} and ()i =0, 1¢ {I¥,..., Ik}

If we define the matrices I(y,) € R¥*™ I(u,) € RF*™ by

1 ifi=1, _ 1=,
(I(ye)ss = { 0 otherwise, and  (I(u))y = { 0 otherwise,
then the KKT conditions (3.4) are equivalent to

My, My, AT Iy)* 0 Yy —c

My M, BT 0 Iw)” || u —d
(3.5) A B 0 0 0 p |=| b |,

Iw) 0 0 0 0 ¢ 0

0 I{u) O 0 0 q 0

where ¢2, ¢¢ denote the Lagrange multipliers corresponding to the active indices.
yr Qu g
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Let [ denote the number of positive components in the solution (y.,u.) of the QP.
The assumption that A is nonsingular is not sufficient to guarantee that the matrix

A B
(36) 6’ = I(y*) 0 c R("y+("y+"u_l))x(ny+”u)
0 I(u)

has full row rank. If C' does not have full rank, then the system (3.5) does not have
a unique solution, even if the QP has a unique solution (y.,u.). It is not difficult to
see that in this case the Lagrange multipliers (p, 4y, ¢%) are not uniquely determined.

If M = 0, then the QP reduces to an LP. In this case the solution of the optimiza-
tion problem can be found in a vertex (y.,u.). Recall that a feasible point (y,u) is
called a vertex if the columns of C' = (A | B) corresponding to the positive compo-
nents are linearly independent, see e.g. [6, § 2]. If (Y, u.) is a vertex, at most n,
components of (y,, u.) can be positive and the columns of C' = (A | B) corresponding
to the positive components of the vertex (., u.) are linearly independent. If less than
n, components of (ys,u,) are positive, the vertex is called degenerate, see e.g. [6, § 2].
In the nondegenerate case, i.e. if | = n, components of (y,,u.) are positive, then the
matrix C has full row rank. In the degenerate case, however, [ < n, components of
(s, uy) are positive. Thus, 2n, +n, —[ > n, +n, and the matrix C cannot have full
row rank. Hence, the solution is degenerate if and only if C does not have full row
rank.

Bound constraints for u. Let (y.,u.) be a solution of the QP and suppose that
no bound constraints are imposed on ¥, or that the bound constraints for y, are not

active. In this case,
= A B
o= ( 0 I(u.) )

Since A is nonsingular, € has full row rank. Therefore, the system (3.4) is uniquely
solvable if the matrix M is positive definite on the null-space of C.

In the LP case, i.e. M = 0, the solution can be found in a vertex (y., u,). Since, by
assumption, ¥, > 0 and A is nonsingular, we can conclude that u. = 0. Consequently,
I(u,) € R™*™ is the identity matrix. In the language of linear programming, y.
are the basis variables and wu, are the nonbasis variables. Thus, this case always
corresponds to the nondegenerate case in linear programming.

No bound constraints. If the bound constraints are not active, then the Lagrange
multipliers g, and g, are zero and the KKT conditions (3.4) are equivalent to the
system (3.5) with the last two row and column blocks of the system matrix removed.
If the matrix M is positive definite on the null-space of C, the system (3.4) has a
unique solution.

4. Interior—Point Methods for the Solution
of the Quadratic Programming Problem
It is not the purpose of this section to give an overview of interior point methods.

We primarily address the structure of the linear systems arising in these methods to
provide the necessary background for the construction of preconditioners. Because of
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space limitations, we focus on primal-dual interior—point methods. However, matrices
with similar structure also arise in barrier methods, see e.g. [19] and [8], and certain
affine-scaling methods, see e.g. [18].

We continue to use the notation of Section 3 and we will employ the notation
common in interior point methods: For a given vector z, the diagonal matrix with
diagonal entries equal to the entries of z is denoted by X. Moreover, e denotes the
vector of ones, e = (1,...,1)%.

The construction of primal-dual interior-point methods is based on the so—called
perturbed KKT conditions corresponding to (3.4), which are given by

Mz4+C"'p—q = -y,
(4.1) Cz = b,
XQe = Obe,

and z,q > 0, where § > 0. To move from a current iterate (x,p, ) with z,¢ > 0 to
the next iterate (z,,p+,q+), primal-dual Newton interior-point methods compute
the Newton step (Az, Ap, Aq) for the perturbed KKT conditions (4.1) and set

($+,p+, q+) = (‘IE + axAx7p + apAp7 q + anq)7

where the step sizes o, ap, oy € (0,1] are chosen so that z,,q, > 0. Then the
perturbation parameter 6 is updated based on xTrq+ and the previous step is repeated.
We refer to the literature, e.g. [20] for details.

The Newton system for the perturbed KKT conditions (4.1) is given by

M CT -I Az Mz+CTp—q+g
(4.2) c Ap | =- Cz—b
Q X Aq XQe —fe

The nonsymmetric system (4.2) can be reduced to a symmetric system. If we use the
last equation in (4.2) to eliminate Ag,

(4.3) Ag=—-X"1QAz — Qe+ 60X e,
then we arrive at the system

) (M“Léf_lQ C)(ip)

If M, = 0,M,, = 0, the system (4.4) is of the form (1.7). As variables y; or u;
approach the bound, i.e. approach zero, large quantities are added to the diagonals
(4,7) or (3,1), respectively.

In actual computations more care must be taken during the reduction of the system
(4.2) to avoid cancellation in the reduction process due to very large elements in X1
see e.g. [9]. A stable reduction of the system (4.2) is discussed in [9]. The unknowns
and the right hand side in that reduced system differ from those in (4.4). However,
the system matrix in the stable reduction is equal to the system matrix in (4.4). For
our purposes it is therefore not necessary to present the lengthier stable reduction
and we refer to [9] for details. :

Mx—I—C’Tp—I—g—GX_le)
Cz—b '
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The influence of inexact solutions of the linear systems (4.4) onto the convergence
behavior of the primal-dual interior—point method and the control of the inexactness
is studied in [4], [12].

Before we continue, we briefly discuss the three cases explored in Section 3.

No bound constraints. In this case the diagonal contributions Dy and D, com-
ing from the interior—point method will be zero or close to zero. Since in our case
the matrix M is positive definite, the system (3.4) has a unique solution. The ill-
conditioning in the matrix K in this case is purely due to the discretization of the
infinite dimensional control problem.

Bound constraints for u. It has been observed, e.g. [10], that in the nondegenerate
case the KKT systems in barrier methods for linear programming can be precondi-
tioned effectively. This will also be true in our case. If only bounds on v are active,
efficient preconditioners can be constructed for the problems investigated in this pa-
per. However, in our applications, ill-conditioning also arises from the matrices A.
Although proven to be nonsingular, the matrices A arising in our applications have
a wide spectrum which causes a large spread in the spectrum of the KKT matrix K.
This will be investigated in more detail in Section 6.

Bound constraints for © and y. For the construction of preconditioners in barrier
methods for linear programming the degenerate case is the difficult one. For example,
the preconditioners discussed in [10] are far less effective in reducing the condition
number of the KK'T matrix in the degenerate case than they are in the nondegenerate
case, cf. Tables 1 and 2 in {10]. This will also be the case in our situation. If bounds
are only imposed on the controls u, efficient and rather general preconditioners can
be derived. However, if state constraints, i.e. bounds on y, are present and active,
then the QP (1.4)—(1.6) is very often degenerate and the design of preconditioners is
much more difficult.

5. Solution of the Linear System

5.1. MINRES and SYMMLQ. Two Krylov subspace methods for the solution of
indefinite linear systems, MINRES and SYMMLQ, have been introduced in [14].
These methods have been successfully used for problems like the one studied in this
paper and are used for the solution of our systems.

We set = (yn, un,pr)¥. Suppose the system to be solved is Kz = b. Given an
initial iterate xo we set 7o = b — Kxy. The Krylov subspace K;(K,ro) is defined by

(5.1) K;(K,mo) = span{rg, K7, ... , K¥ 1y}
In iteration 7, § = 0,1,..., the minimum residual method MINRES computes
z; € Kij(K,r)
such that z; solves
ze,gl(i}{l’ro) lro — Kxl|.

In iteration 5, = 0,1,..., SYMMLQ computes the iterate
z; € K:j(K, ?"0)
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such that z; solves
(’/‘0 — Kl‘j)TU =0 Wwe K:j(K,’/‘()).

Since K is indefinite, such an z; may not exist. If it does not exist, SYMMLQ
generates an iterate using information obtained from the Lanczos tridiagonalization.
See [14].
The representation of Krylov subspaces (5.1) show that z; € K;(K, 7o) if and only
if
J»'] = pj—l(K) To,

where p;_; is a polynomial of degree less or equal to j — 1. This yields an upper
bound for the residuals in MINRES:

— 1
(5.2) llro — Kz = llp; (K)roll < min ) "I Iroll-

Here A(K) denotes the spectrum of K and II} denotes the set of all polynomials p
of degree less or equal to j which satisfy p(0 ) = 1. From (5.2) one can derive error
estimates, see e.g. [16]. For example, using Chebyshev polynomials, one can show
the following convergence estimate for MINRES:

k-1 Li/2]
Iro = Kol <2(525) 7 el

where =X/ is the condition number of K with A=minyea(x) |Al; A=maxrea(x, |,
and |j/2] is the largest integer less or equal to j/2.

If the matrix X has an unfavorable eigenvalue distribution, one constructs a non-
singular matrix P such that K = P~ 1K P~T has a smaller condition number and
better clustered eigenvalues. Instead of Kz = b one solves the preconditioned system
K% =b, where K = P"'KP~T, & = PTz, and b = P~1p. Of course, the precondi-
tloner P has to be constructed so that matrix—vector multlphcatlons with P! and
P~T can be done efficiently and so that the eigenvalue distribution of P~ IKPTi
improved.

For more details on MINRES and SYMMLQ we refer to [14], [2], and [3]. Those
references also contain some details of the implementation. Complete listings of the
preconditioned MINRES and SYMMLQ algorithms are given in [3]. We have imple-
mented MINRES and SYMMLQ in Matlab.! Recently a version of the QMR algo-
rithm has been developed in [9] to solve symmetric indefinite linear systems. These
allow the application of indefinite preconditioners. If the preconditioner is positive
definite, as in our case, then this QMR based method is equivalent to MINRES.

5.2. Eigenvalue Estimates. If A is invertible and if H, and H, are positive definite,
then the matrix K defined by (1.7) has n, + n, positive eigenvalues and n, negative
eigenvalues. More information on the eigenvalue distribution of K is provided by the
following result, which is proven in [15]:

1A Fortran implementation of SYMMLQ written by M. Saunders is available from Netlib. See
linalg/symmlq at http://www.netlib.org/linalg/index.html.
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Lemma 5.1 (Rusten/Winther). Suppose that H, and H, are positive definite and
that (A | B) has rank m,. Let p1 > pa > ... > fin,4n, > 0 be the combined
eigenvalues of H, and H, and let 01 > 09 > ... 2 0y, >0 be the singular values of
(A | B)T. The eigenvalues A1 > ... 2 Apyqny > 0> Apyingt1 = o0 = Aoyin, Of K
obey

1
(5.3) A2ny 4, §(Mny+nu Y .U'%y+nu + 4U%>’

v

(5.4) Angtngtl S %(/Jl — /15 + 4U%y)7
(5.5) Angtn 2 Hngtnus
(56 o< o (o).

6. The Preconditioners

We now turn to the preconditioners for the matrix K in (1.7). We assume that
H, € Rw*™, H, € R™*™ are symmetric positive definite and that A € R™*™ is
nonsingular.

In the following P, and P, are preconditioners of H, and H,, respectively, i.e. P,
and P, are nonsingular matrices such that

(6.1) P'H,PT~1, and P'HP; =1
By A~ we denote an approximate inverse of A,
(6.2) ATAXT.

In our numerical tests we use P, = [diag(H,)}"/?, P, = [diag(H,)]"/?, and A = A.
Since the diagonals of the mass matrices M,, and M, are very good preconditioners
for these matrices, these choices for the preconditioners P,, P, are efficient and satisfy
(6.1).

In our computations we use K derived from the model problem and the finite
element discretization outlined in Section 2.2. In all computations we use d, = d,,.
MINRES and SYMMLQ were used with starting value zo = (yn,un,pr) = 0 and
the iterations were stopped when ||P~1b — PT1KP~Ti;|| < 1075. We do not test
our preconditioners within an interior—point method, but simulate the matrices K in
(1.7) that would arise in an interior point method by adding diagonal matrices Dy
and D,. All computations are done in Matlab.

In the analysis of the preconditioners it will be helpful to distinguish four cases.

Case 1 (y=1, D, =0, D, =0): In this case we can reduce the condition number
of the systems under consideration considerably. By preconditioning we reduce the
iterations required by MINRES and SYMMLQ to a number which appears to be
independent of the grid size.

Case 2 (y < 1, D, =0, D, = 0): In this case, the spectrum of H, moves towards
the origin, and while the conditioning of H, itself is not changed, the condition num-
ber of K increases significantly. In this situation, ill-conditioning of K is induced
by ill-posedness of the original problem. As 7 decreases, the system with K be-
comes hard to solve, and for sufficiently small values of v+ MINRES and SYMMLQ
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need an unacceptably large number of iterations. The performance of MINRES and
SYMMLQ improves on the preconditioned systems.

Case 3 (y =1, D, = 0, D, > I): If bound constraints for u are active, corre-
sponding diagonal entries in D, increase. We write D,, > I and mean this to be
understood component wise. Large entries in D, can be shown to affect the condi-
tioning of the preconditioned system only to a moderate amount. In fact, they can
even help to neutralize a small parameter -y or large entries in D,. In this case our
preconditioners are very effective.

Case 4 (y =1, D, > I, D, = 0): This case corresponds to the situation where
bound constraints on y are active. As mentioned in Sections 3 and 4 the solution
may be degenerate and this case may correspond to the degenerate case in linear
programming. Often, a large diagonal in H,, unfavorably affects the performance of
MINRES and SYMMLQ on the preconditioned systems. While the preconditioners
introduced in the following lead to some improvement, their effectiveness in this case
is much smaller than in the Cases 1 and 3. We point out that in our applications the
number n, of states is much larger than the number n, of controls. Hence if more
than 7, states are active at the solution, then the matrix ¢ in (3.6) can not have full
row rank. In our numerical tests for Case 4 we set D, = 10*I. This simulates the
worst case in the sense that this corresponds to the case where all states approach
the bounds. Our numerical tests always correspond to the degenerate case, which is
the hard case.

6.1. The First Preconditioner. The first preconditioner is given by
P70 0
Pt=| 0 P 0
0 0 PrA™!
The preconditioned KKT matrix is

P;'H,PT 0 BtATATP,
(6.3) P'KPT = 0 P'H,P;T P'BTATTP,
PTA-1AP;T PIAT'BFR;T 0
and we expect that
I, 0 In,
(6.4) PI'KPT=| 0 My, PBTATPR, |,
I, PTA-'BP;T 0

where I is an approximate identity matrix. The preconditioned system still has the
structure allowing us to estimate its spectrum using Lemma 5.1. The derivation
of the general form of our first preconditioner is motivated by the assumption that
for preconditioners P,, P, of Hy, H, and for an approximate inverse A7l of A the
singular values of

», T A -7
(6.5) B=PrABE,

are of moderate size. If P, = M}/?, P, = M}/%, and A = A, this is guaranteed in the
situation of Section 2.1. See Lemma 2.1.
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Lemma 6.1. Let B € R™*™. The singular values o; of (In|B) are given by

oi=\1+0¥B), i=1,...,n,

where 01-(3) are the singular values of B. If Ny > Ny, B has n, singular values, and
we set 0;(B) =0 fori=mn,+1,...,n,.

Proof. 'The proof follows immediately from the fact that the squares of the singular
values of a matrix B are the eigenvalues of BBT. O

In the situation of Section 2.1 the estimate in Lemma 2.1 shows that
(6.6) 0i(B) < |IM)2PAT'BM?|| <¢, i=1,...,n,,

for a constant ¢ independent of . Thus in Case 1 (H, = M, and H, = M,) we expect
that, for preconditioners F,, P, and A neutralizing the dependency of Hy, H, and A
on the mesh constant h, we can similarly bound the singular values of Pf fl_lBPu_ T
such that

(6.7) 0;(B) < ||PFA'BPT|| < cp,

where cp is a constant independent of h.

Assuming that (6.7) is valid we discuss the expected performance of the first precon-
ditioner in the four cases defined earlier. By 0" = agl)(Pf A'BP;T), 1=1,2,3,4,
we denote the singular values of PTA-1BP;T in Case | = 1,2,3,4.

Case 1 (y=1,D,=0, D, =0): If y =1, (6.7) shows that there exists a constant
upper bound for the singular values o (H}/2A~* BH*/?). The preconditioner P; can
be expected to perform well if the preconditioning matrices F,, P, and A neutralize
the influence of the mesh size A on the submatrices and thus on the system, and
if the singular values of P A"'BP;T are bounded by a small constant cp. If the

eigenvalues of P, "H, P, and P;TH,P, " are close to one and if o)« 1, where
o) denote the singular values of (PTA7'BP;T), we can deduce

)‘ny—i—nu ~ 1a )\ny+nu+1 ~ %(1 - \/5),

so that the eigenvalues of the preconditioned system are bounded away from zero.
If in addition o{!) . i.e. the constant cp in (6.7) is of moderate size, Lemma 5.1
guarantees that the condition number of the preconditioned system P 'K P;7T is
small. MINRES and SYMMLQ will perform very well on the preconditioned system.
This is confirmed by our numerical tests. See Table 1. '

The preconditioner will perform poorly if the singular values of P?;f Zl“lBPu‘ T are
not small. This happens in two of the remaining three cases.

Case 2 (y < 1, D, = 0, D, = 0): If a small parameter v determines the size
of the eigenvalues of the matrix M,, we must expect that bounds on the norm
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|HY/2A=*BH_'/?|| grow with the reciprocal of /7. Denoting by o the singular
values of H}/2A"'BH_ /2, we have the relationship

—3,
4]
For decreasing values of -y the spectrum of P;f fl‘lBPu" T expands and the conditioning
of the preconditioned system deteriorates.

Case 3 (y=1, D, =0, D, > I): In this case H, = yM, + D, where D, > I,
i.e. some diagonal entries may become very large. Analogously we write P, = vFo +
Pp, where Pp stands for the (large) diagonal entries and Pp for the off-diagonal
entries that are generally of moderate size. By 01(3) we denote the singular values of
PTA7'BP,;”. We obtain the estimate

1
o® = L o0,

02(3) _ 053)(P5A_1BPJT) = gz@(PyT;l_lB(’yPo + PD)_T)
=BT AT BP,"(vPp Po+ 1))

. ) B B . ~ 1
|PZA B [ B57 I 7(P5* Po + 1Tl < | PTABI| | P57

1— P8P

IA

If D, dominates the matrix H,, |vPoPp~| will be of negligible size. If additionally
4 < 1, this contributes to reducing the factor 1/(1 — 7PoPp'|l) to a constant
close to one. The norm ||[Pf A7 B| can be expected to be of moderate size, while
|P5Y | will be very small. The singular values o® converge to zero as the entries in
the diagonal D,, and with it in Pp, grow. In the case of large diagonal entries in
H, we can expect a good performance of the solvers on the preconditioned system,
due to a small condition number of P~ 'K P[T which is in turn induced by small
singular values of PYA™*BP, . The performance of MINRES and SYMMLQ on the
preconditioned system is documented in Table 2.

Case 4 (y =1, D, > I, D, = 0): If we denote by P, the preconditioner for H,
and by Po, Pp its off-diagonal part and its diagonal part, respectively, then we see
that the matrix PTA~*BP,T will have very large singular values. This is indicated

by the estimates (M = A-1BP;TP;1BTA-T)

Amaz((Po+Pp)T M (Po+Pp)) 2 Mmas(PMPp) 4+ Amin(P5 M Po+ Fg M Pp+ P M Po)
and

Amin((Po+Pp)T M(Po+Pp)) < Amin(PS M Pp+PEM Po+PE M Pp)+Amas(P5 M Po).

For the estimates see [11, p. 411]. While the preconditioner yields a considerable
improvement over the unpreconditioned system, the improvement is less than in
Cases 1 and 3. See Table 3. However, the improvement is expected to decrease as
the diagonals in D, become larger.

6.2. The Second Preconditioner. We have seen that the effectiveness of precondi-
tioner P, depends on the size of the singular values of the matrix B defined in (6.5).
The preconditioner P, is designed to isolate the effect of B. In order to make the
action of the second preconditioner transparent, we consider the ideal version of P,
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denoted by Py, ie. we choose P, = HY?, P, = H;/Q, and A = A. For the general
form of the preconditioner, which is used in the computations, we refer to [3].
The ideal preconditioner Py is given by its inverse as

H'2 0 0
(P! = 0 H/? 0 .

_H;\? _HV2ASBH;' HY?A™

The ideal preconditioned system is

I, 0 0
PKPyT =10 I, 0 ,

0 0 —(I, +BBT)

where B is defined by (6.5) with P, = HY/?, P, = H;/Q, and A = A.

The application of the preconditioner P is roughly as expensive as the application
of the preconditioner P;. The performance of P, is slightly inferior to the performance
of P;. See Tables 1-3. The eigenvalue distribution of the preconditioned system,
i.e. the eigenvalue distribution of (I,, + BBT), can be analyzed analogously to the
previous case.

Table 1
Iterations of MINRES and SYMMLQ on K withy=1, D, =0, D, = 0.

grid size d, | 5| 10 { 16 | 20 | 256 | 30
dimension || 92 | 282 | 572 | 962 | 1452 | 2042

Without Preconditioning
MINRES || 47 | 185 | 431 | 784 | 1070 | 1483

SYMMLQ || 47 | 179 | 407 | 647 | 902 | 1209

Preconditioner P,
MINRES || 23| 25| 24| 21 21 19

SYMMLQ || 23| 24 22| 21 19 19

Preconditioner P,
MINRES || 24| 35| 37| 37 35 35

SYMMLQ | 24| 35| 36! 35| 35| 33

Preconditioner P;
MINRES | 7| 6 5 5

SYMMLQ| 7| 6| 5| 5 5

6.3. The Third Preconditioner. A third preconditioner is derived from reductions
performed to solve QP subproblems in sequential quadratic programming methods,
sce e.g. [7]. As before we use the ideal form for the presentation of the preconditioner.
The general form of the preconditioner, see [3], is used in the computations. The ideal
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Table 2
Tterations of MINRES and SYMMLQ for K with v =1 and D, = 10*-I, D, =0.

grid sized, | 5 | 10 | 15 | 20 | 25 30
dimension || 92 | 282 | 572 | 962 | 1452 | 2042

Without Preconditioning
MINRES || 564 | 173 | 349 | 589 | 857 | 1183

SYMMLQ || 54 | 173 | 349 | 579 | 8481165

Preconditioner Py
MINRES || 16 | 18] 18| 18 18 16

SYMMLQ || 16| 18| 18| 18| 17| 16

Preconditioner P,
MINRES || 21| 33| 35| 37 35 35

SYMMLQ || 21| 33| 35| 35| 33| 33

Preconditioner P
MINRES | 5 4 4 4

SYMMLQ| 5| 4| 4| 4 4 4

Table 3
Iterations of MINRES and SYMMLQ for K with v =1 and D, = 10*-I, D, = 0.

gridsized, | 5 | 10 | 15 [ 20 | 25 | 30
dimension || 92 [ 282 | 572 | 962 | 1452 | 2042

Without Preconditioning
MINRES || 73 | 282 | 572 | 962 | 1452 | 2042

SYMMLQ | 73 | 282 | 572 | 962 | 1452 | 2042

Preconditioner Py
MINRES [ 50 | 98194 289 449| 530

SYMMLQ || 50| 98187283 | 410 | 524

Preconditioner P,
MINRES || 61 | 146 | 235 | 323 | 453 | 583

SYMMLQ || 61 | 143 | 233 | 323 | 447 | 547

Preconditioner P;
MINRES | 44 | 67 |120|203| 275| 366

SYMMLQ || 44| 56| 120|167 | -286| 355

preconditioner Pj, given by its inverse as

I, 0 —1/2HA™ )

(Pt = ( 0 0 A1
—(A7'B)T I, (A'B)TH,A™!
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transforms K into the preconditioned system

0 I, 0
P)T'K(P) "= I, 0 0 ,
3 3 y
0 0 WTHW

—A"'B _(H, 0
we (7)) e (% A
The matrix W is a representation for the nullspace of C = (A|B). The matrix
WTHW is given by

where

WTHW = BTA"TH,A™'B + H, = HY? (BTB + Inu> HY,

where B is defined by (6.5) with P, = HY?, P, = H/?, and A = A. Note that the
partitioning of the blocks in the preconditioned system has changed.

The preconditioner P is the most effective in reducing the number of iterations.
See Tables 1-3. However, the application of the general preconditioner Pj is roughly
twice as expensive as the application of the preconditioners P; and P,.. See [3]. The
eigenvalue distribution of W7 HW can be analyzed analogously to the preconditioned
system with P;.

7. Conclusions

In this paper we have derived preconditioners for matrices K arising in the numeri-

cal solution of certain distributed linear quadratic control problems by interior—point
methods. The preconditioners are in block form, with blocks composed of precon-
ditioners for the individual blocks of the matrix K. This allows the incorporation
of known preconditioners for the governing equations of the original problem and it
allows to reuse computationally expensive information within all interior—point iter-
ations. The effectiveness of the preconditioners was analyzed using the properties
of the control problem and its discretization, the block structure of the matrix K,
and information from the optimality conditions. Numerical results supporting the
theoretical analysis were given.
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ABSTRACT. We investigate augmented Lagrangian algorithms to solve state and control
constrained optimal control problems. We augment both the state-equation and the non-
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1. Setting of the Problem

Let Q be an open, bounded subset of IR™ , n < 3, with a smooth boundary I". We
consider the following optimal control problem:

. _1 2 & 2
(P) min J(y,u)—i/n(y—zd) dnr:+§/F (u—ug)* do
(1.1) Ay=finQ,y=u onTl,
(12) AlyGK,UEU,
where

o f, 25€ L*(Q), u, ug € L*(T) and either & > 0 or U is bounded in L*(T),

e L is a finite dimensional (Hilbert) space and A; € L(W, L), (W is defined just
below).

e K and U are nonempty, closed, convex subsets of L and L?(T") respectively.

e A is an elliptic operator defined by:

Ay == 0,(ai5(2)0;y) + ao(x)y with
1,j=1

(1.3) aij,a0 € C2(Q) for i,j=1,...,n, inf {ae(z) |z € O} >0
D ag(@)eil; > 6 & Vr e QVE€RY,6>0.

ij=1 i=1
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System (1.1) is well-posed: for every (u, f) € L*(T') x L?(2) there exists a unique
solution y = 7 (u, f) in W, where

W={yel*Q)| Ay e I*Q) , yr € LD) )

Moreover T is continuous from L?(T") x L*(Q) to W, when W is endowed with the
graph norm:
lyliv = lyla + 1Aylg + lyel? -

From now on, when H is an Hilbert-space, we denote by (, )y (resp. (, )o and
(, )p) the H (resp. L*(Q) and L*(T')) inner products and by | |z, | o, | v, the
H, L*(Q) and L*(I")-norms, respectively. Moreover, we define A : W x L*(T) —
L x L*(T") by A(y,v) = (A1(y),v) and we assume that the feasible domain

D={(gueWxLT)|Ay = f inQ,y=vonl, AMy,u)e KxU},

is nonempty. It is easy to see that problem (P ) has a unique solution (7, %) since the
functional J is strictly convex and coercive and D is convex, closed and nonempty.
Our main purpose is to present new augmented Lagrangian algorithms to solve nu-
merically optimal control problems of the above type. Usually such algorithms use
the augmentation of the “smooth” part of the constraints, that is the state-equation.
This has been done in Fortin-Glowinski [3] and adapted to the present example in
Bergounioux [1]. Here we use a different point of view, since we use a Lagrangian func-
tion where both the state-equation and the nonsmooth constraints “A;y € K, u € U”
are augmented. These last constraints are augmented using a method developed in
Ito and Kunisch [4].

2. Optimality Conditions

In this section we recall a result which is crucial to interpret the forthcoming
algorithms and to give convergence results.

Theorem 2.1. Let (§,4) be the optimal solution of (P) and assume the following
qualification condition

There ezists a bounded (in L*(Q) x L*(T)) subset M of W x L*(T') such
that A(M) C K x Uand 0 € Int,(V(M)) ,

where Inty denotes the interior with respect to the L2(Q) x L*(T)-topology
and V(y,u) = (Ay — f,ylr — u).

Then there exists (§,7) € L*(Q) x LA(T) and (B, fiz) € A(W) x L*(T) such that:

(2.1) Aj=f inQ,g=a onl,

(H)

(2.2) (T — 24,9)q + (@, AY)q + (T y)r + (i, My)L =0 forall ye W,

(2.3) o (G —ug) =7 — ig € L*(T)

(1, M(y — 9));, <0 for ally such that Ayy € K,
(fg,u— ) <0 forallucU .

(2.4)
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Proof. This is a particular case of a more general result that can be found in [2]. m

As a specific example, L can be chosen as the set of linear finite elements with
respect to a triangulation of Q and A; : W — L can be the L?-projection.

3. Lagrangian Algorithms

In this section we turn to the numerical realization of the constrained optimal
control problem (P). We shall combine the techniques from [1] and [4] augmenting
the state equation as well as the constraints characterizing the feasible set D, to
obtain well performing algorithms.

3.1. Augmentation of the State Equation. First we recall an augmented Lagrangian
algorithm based on the penalization of the state equation (see (3], [1] and the refer-
ences therein).
Algorithm A,
e Step 1. Initialization: Set n = 0, and choose v > 0, g, € L*(Q2), r, € L*(T).
e Step 2. Compute

(Yn,un) = Argmin L,(y,v,qn,7s)
Ay,u)e K xU

where
Ly(y,4,0,7) = J(,0) + (¢, Ay + (ry — w)p + 3|y = fIa + 1y —ul?
is the augmented Lagrangian with respect to the state equation constraint.
e Step 3. Set
Gn+1 = Gn + o1 (Ayn — f) where p; € (0,27],

Tntl = Tn + P2 (yn[F - un) where P2 € (07 2’7 ] :
The analysis of this algorithm is rather standard, see [1] and the references there. For
the convenience of the reader we provide a precise convergence result (which appears
to slightly generalize the existing ones) and give a concise proof.

Theorem 3.1. Let (7, %) be the solution to (P) and suppose that (H) holds. Then the
iterates of Algorithm A, satisfy

1 1
3.1 _ 2 n__—2 —|qn _ =2 S _ =2
) I =+ ol — T+ 5 ~lars = 2l + 5 s = 71

f1 p2 1 _ 1 _
+ (7 =5l Aya — A+ - 5o = Unft < 2_’51'|Q'n -+ z—pzirn — 7

foralln=20,1,2,... . This implies
o 2 o 2 P1y 2
(3'2) Zlyn"glﬂ_l'az |Un—ﬂ|r+(’7_ _2‘)2 |Ayn_f|9
n=0 n=0 n=0
P2\ 2 1 12 1 —12
7 _ < gy — =y —
+ (v 2 )?;)kyn Un|p < 2p1IQO alo + 2p2|7"0 Tl ,

and in particular strong convergence of (Yn,un) — (§,@) in L*Q) x L*(T), and
boundedness of {(gn,7n)}. If moreover p; < 2y and ps < 27 then (yn,un) — (7,%)
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in W x L3(T'), and every weak limit (§,7) of (gn,Tn) has the property that (7,4, 4,7)
satisfies (3.3).

Proof . From Theorem 2.1 we obtain

63) (769,60 -60) +(246-0) +(ry-1-0-0) 20

QxT

for all A(y,u) € K x U. The solutions (y,,un) of Step 2 are characterized by

(/s ), () = () + (i, A =0,
(3.4) +(rn+1, Y—Yn— (u— ““))r + (v - pl)(Ayn - [ Al - yn)>Q
+(7—pz)(yn—un,y—yn—(u—un))F >0

for all A(y,u) € K xU. Adding (3.3) with (y,u) = (¥n, un) to (3.4) with (y,u) = (¥,%)
one obtains
(35) <J,(ym un) - J’(g, ﬁ)’ (ym un) - (57 ’U')) + (Qn-‘rl - q_y Ayn - A:Ij)
QxT Q
Let us note the following equality

1 1 I
(3.6) (a+pbb)g = %la‘*‘/’bﬁv - é—p|a|§1+ glbﬁza

for all elements a,b of a real Hilbert space H and all p € IR.
Due to (3.6) we find

_ _ 1 _ 1 - pP1 _
i1 — Gy A(Yn — ) = |gnr1 — @3 — =—lam — @3 + 5| Ay, — Ag2
(q 1= 3, Ay — ) . 2pllq =g 2p1|Qn dlo + 5 1Ay 7o

and

= _ 1 =12 1 ~2 , P2 2
(Fast = ot = tn) = gl = 7R = gl = 7lE o+ Gl =l

Inserting these equalities into (3.5) we obtain

1 1
lyn — T3 + &ttn — 8} + 5—gn11 — @&+ 5=[Tn+1 — I3
2m 2p2

p p
+—21-|Ayn — fla+ flyn — 2+ (7 = p1)|AYn — FI2+ (7 = p2)|tn — unl?

1 1
<o n—_2 +—_Tn'—/F2 )
> 2p1|q alg 2p2] It
and (3.1) follows. Using a telescoping argument (3.2) is implied by (3.1). The ascer-
tained convergence properties follow from (3.2), (3.4) and uniqueness of (7,%,q,7).
|
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3.2. Augmentation of the Non Smooth Constraints. The main remaining problem
is the resolution of the auxiliary problem of Step 2 in Algorithm .4,. This auxiliary
problem can be written as:

(Yn,un) = Arg min L, (y,w)
Aly,u) e D .

To simplify the notation we omit to indicate the dependence of L, on g and r. During
Step 2 these functions are fixed. We set H = L x L#(T'). Let ¢ be the characteristic
function of the convex set D. Then, following [4], we define (for any ¢ > 0) the
function . : H x H — IR by:

(37) pe(@,X) = inf{ oo =€)+ (\ O + 516l }

where z = (y,u). Here (, )y (denoting the H-inner product) is given by (A, §)y =

(A1, &g + (A2, &2)p » with A = (Ag, A2) and € = (&1, &2).
We recall some properties of the function ¢, (for more details one can refer to [4, 2]):

Proposition 3.1. For all z = (y,u) € H and A= (A, \g) € H

c A A
eo(@X) = Sly=Pely+ DN+ Gy - Pely+ 7)),

(3.8) . \ \
2412 2

+§|U — .PU(’LL + ?)|I‘ + ()\2,” — PU(u + —Z—))F ,
A A A A

09 e[y 2R s 2 - s )

where Pk (resp. Py, Pp)is the L (resp. L*(T"), H) projection on K (resp. onU, D).
Proof . See [2]. [

We are going to use the following algorithm and a splitting variant to solve the
auxiliary problem:

Algorithm A,

e Step 1. Initialization: Choose A° € H and ¢ > 0.
e Step 2. Compute

(v/,w) = Argmin L,(y,u) + @(Ay,u), M)
AMy,u) e W x L*(T) ,

where ¢, has been defined in the previous section.
e Step 3. Set

41 _ o (A ). N M TR IR S
M = QA ), ) = ey + T Py +0), w+ 2= Pr(i+22) ),

(see 3.9).

The convergence of this algorithm under the assumption that L is finite dimensional
follows from result in [4].
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3.3. Final Algorithm. We now write the version where Algorithm A; appears as an
inner loop in algorithm A,:

Algorithm A
e Step 1. Initialization: Set n = 0, and choose v > 0, ¢ > 0.
Choose (go,70) € L2(Q) x L*(T) and A, = (Ao1, A2) € L x L(T).
e Step 2. Choose k, € IN, set A2 =\, , and for j =0,... , ky:

(yi,ul) = Argmin L,(y,%,0n,Tn) +soc(A( u), M,)
(y,u) € W x L2(T) ,
N = (L NED with
. /\j )\j
)\fﬁl = Ay + 2 — Pr(Myl + —“)]
,\J‘ N
)\J-H = [UJ+"C—_PU( ‘Téﬁ)]

End of the inner loop:

Entl k
A

)‘n—f-l: y Yn ynaun_un-

e Step 3.

Qi1 =n+p1 ( Z Yl — where p; € (0,27 ],

k—i—l

I & ;
Tn+1:Tn+p2 (k +1Z(y%|r‘—u‘37,)) p2€(0)2’Y]
2 =0

Theorem 3.2. Let (7,%) be the solution to (P) and suppose that (H) holds. Let
(q,7, ) € L*(Q) x LA(T') x L x L*(T') be an associated Lagrange multiplier. Then the
iterates of Algorithm A satisfy

k,+1 k,+1
=12 o2 n 2 n o2
|yn — Flo + afun — lF + % |gn+1 —alg + 20n ITn41 = 7IT
P2 1 -
(3.10) +(v - —)IAyn FIA+ (v = )un = valt + o= Ant1 — Blixze
2 2c
k,+1 - kn+1 _ 1 _
< 2p |qn_Q|Q+ 292 |Tn_rl%‘+ %p‘n'—ﬂ"%xL?(F)
for alln =0,1,2,... . If k, is nonincreasing this implies
oo (e e}
oy =gl +a ) fun —al
n=0 n=0
41 e 2
(3'11) 7 +(’Y - 5) Z ’Ayn — f|§2 ’Y Y Z |un yn|12"
n=0

ko+1 _ ko+1 Z12 —12
< 2 lgo — lg + 2% |T0*T|r+'2'c'|>\o—M[LxL2(r)
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and the strong convergence of (Yn,un) — (7,) in LE(Q) x L*(I), and boundedness
of {(gn,Tns An)}. If moreover p; < 27y and py < 2 then (yn,un) — (§,0) in W x
LX) and every weak limit (g, 7, 5\) of {(gnyTn, An)} has the property that (7,4, 4, , A)
satisfies (2.2), (2.3).

Proof. From (2.2), (2.3) it follows that

+ (Qa Ay)ﬂ + (f,y - u)l" + <ﬂ, A(y,u)) =0

LxL2(T)

612 (7@,9), ()

Qxr

for all (y,u) € W x L3(T). The solutions (yi,u) of Step 2 satisfy

(J’(yLUiL),(y,U))QXrJr(qn i H(Ayn f)w‘ly)Q

(313) +(y - kH)(Ayn £ Ag)a+ (ra+ 2502~ vy —u)_

P2 Vi —d g — )+ ( PA(yE ud), M), A(y,u))me =0

- 55T
for all (y,u) € W x L*T). Let us denote ¢! := ¢,, ;' = r, and for j =
ke, neN
J

J
1 ; ; P2 ;i
> (Ay, = f), mhi=rat > —un) -

1iz R

@ =qn+

From now, for convenience, we omit the indication of the norm since there is no
possible confusion. From [4] it follows that g = ¢L(A(y, %), ). From (3.12) and
(3.13) we deduce for j =0,1,...

(J'(yi;,Uf;) - J'(@,a), (¥, 4,) — (3, ﬂ)) + (qffl T + I(Ayn £ —a, Ay - f)

j—1 R _ i_ g2
+(n +k+1<yn ) - 7,3 u)Jlrw Ay~ 1
_ J_ iz P J_
+(y kn Pl —unf* = +1§(Ayn LAY - 1)

+1 io yn _un’yn_uj)
+(¢;<A<yz;,u£> x) HA@ D), B, A, u) ~ M@, T)) =0,

where ) _ :=0. From [4] it is known that
i=0

LA, ul), M) — on(AG,4), 1), A(y], ) — A(F,3)
g (G PN, 7.9)
—W* il —%IAZL—MI ,

l\.':
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for j =0,1,...,k,. Inserting this inequality in the above equality and using (3.6)
we obtain

_—_— . k,+1 ~ kn+1, .4 _
lvi — 9 + alud, — al* + = ——Igh —q* — =5 _—ldl ™ —af’
2p
kn, +1 ko +1, .
Al 2 =2 _ ' j—1 _ =2
R e L e e L e v L
__P |2 Au A —
BT +1))|yn ul’ — +1Z( v, — Ay — f)
P2 Ly i g i 1 i+1 2 i 2
- C—aul, ) —ul) + — (AT =B =M, - g) <0
knﬂg(yﬁ, vr —up) + o (1A = AF = X%, — al)
for j =0,1,...,k,. Summing the above inequality over j and using the fact that
kn -1 kn
(11
> > (ai,05)u < —2‘2
j=11i=0 §=0
we arrive at
k
no , k,+1 k,+1
7 =12 7 =12 n kn = n kn =2
D —Y° +aju, —ul”) + ——|g" — —— T =T
J_Z:B(Iy 71° + ofuy, — af) ooy [ | 2 | |
kn
P Pz ,, =
—5) 2 lAy - fIP+ Zlyn CIAQ g
3=0
kn+1 o knt1 =12 0_ =2
< n — — —|A — .
— 2p1 |q | + 2p2 ]Tn TI +2C| n /‘L|

Since (Yn, tn) = (¥, uE), (Gni1, Tg1) = (g, 75) and 2y > p1, 27 > p, this implies

ky +1 kn+1
=12 12 n =2 n =2
[y — §1* + afun — @l + o lgn+1 — )" + % |Tns1 — T
p 1 _

+(y - —)IAyn PP+ =)ln =l + 5 i — AP

kn+1 o ka1 o1 .

< - e  I'n T '_)‘ - 3

= 2p1 an | + 2p2 |7‘ 7‘.| +20| n #l

which is the desired estimate (3.10). Summation over n implies (3.2). This ends the
proof. ]

3.4. Adding Gauss-Seidel Spitting. Our final goal is the analysis of Gauss-Seidel
splitting techniques to solve the auxiliary problems. A similar approach was taken in
[1]. The splitting avoids the minimization of the auxiliary problem with respect to y
and v simultaneously. The new algorithm is:
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Algorithm ASS
e Step 1. Initialization: Set n = 0, choose v > 0, ¢, € L*(Q?), r, € L*(T),

U_j € U.
o Step 2.
Y = Arg min L.(y, Un—1,Gn,Tn)
Aly eK
U, = Arg min Lfy(ym U, Gny Tn)
uelU
e Step 3.

Gn+1 =Gn + p1 (Ayn - f) where p1 € (07 27] y
Tnt1 =Tn + P2 (Ynr — Ua) where p; € (0,7] .
Theorem 3.3. Under the assumptions of Theorem 3.1 the iterates (Yn, Un, Gn,Tn) Of

Algorithm AS® satisfy

1 1
o2 o2, b T a2
|y — lg + ctlun — G5 + 2 |Gns1 — @lg + 202 [Tni1 — Tlp

P P
+ (7 - '%)'Ayn - f|?z + (’Y - é)lun - yn|%‘

(3.15)
+ (0 22 = s+ 2 — 2
1 _ 1 _o P2 Y _
< 2—p1|qn - Q|?)+'2—p;l7"n — 77+ 5 Mtn—1 — yn_1|%+§|un_1 — alp
for allm=0,1,2,... . This implies
= —12 = _12 Pl A 2
Z|yn'_y|9+a2|un—u|r‘+(7_'E)Zl yn_f|ﬂ
n=0 n=0 n=0
Y - P2\ =
(3.16) +§ > Jun — Ynl? + ( + 5) S un — tn-1ff
n=0 n=0
< Dlg— gt el — 2 Oy T - al
T 2p 202 2 2

Proof. The optimality conditions for the two auxiliary problems of Step 2 give
<ng!(yn>un—l)ay - yn>n + <Qn7 A(y - yn))ﬂ + ('rmy - yn)F
+7(Ayn —fAly— yn)>Q +7(yn —Un-1,Y — yn)]P >0 forall iy € K,

and

(JL(ym un),u - un) - (Tna U — un)
r r

(3.17)
_fy(yn_umu—un) >0 forallueU.
r
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Adding these two inequalities and combining with (3.3) we obtain

(1) = T'0,2), () = (7,7

Qxr
318) +(gor = 6 Al =)+ (rwrr = 7ot~ )
7= o)Ay — FIB + (7 — P2l — +7(un_1 g — yn)r <0.

This expression coincides with (3.5) except for the last term on the left hand side of
(3.18). Proceeding as in the proof of Theorem 4.1 we therefore obtain

1 1
2 a2, b T a2
[Yn — 71§ + ctlun — alp + 20 |gns1 — @l + 202 |7ny1 — 77

P1 P2 -
(3.19) = Ay = fla+ (v = )y — walp + Y (tnet = s T = V) -

+(
1 1
< ——lgn —GE+ =—|rn — 7% .

The method of estimation of (un_l — Up, § — yn> is standard [3], but is given for
r

the sake of completeness. First we note that

<un—1_ Un,§J — yn) = (un — Upn—1,Yn — yn—l)
T T

(3.20) +<’un —Up—1,Yn-1— J— Up-1+ ﬂ)
r
+o (Jun — Ul = [tn—1 — Glf = [tun — un1lp) -

Using the optimality condition (3.17) for n and n — 1, with u = u, and v = up1
respectively and adding the two resulting inequalities one arrives at
—altn—una|f+ (rn—rn_l,un—un_1>r—'y(yn—yn_1 _(un_un—l)’un—l—un)r >0,

which in turn implies

(3:21) 7<yn — Yn-1,Un — un_l)l"
> (v + o) — tnafp — p2 <un = Un—1,Yn-1— Un—l)r ;
for n =1,2,.... Inserting (3.21) into (3.20) implies that
Pt =G =90) 2 (@ Pl = s}
r
+(r— p2)(un — Un—1,Yn-1 — un~1)F

Y _ _
+§(|un - ul%‘ — |tp-1 — u]%‘)
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s P27
- 2
Y ~ _
(3.22) oy (ln = Al = fun — ),

Y- = tra-a? + (04 ) — a2

where py < v is used. Inserting (3.22) into (3.19) the desired inequality (3.15) follows.
The second inequality in the claim of the theorem follows by a telescoping argument
from the first one. ]

Once again, we may use algorithm A; to solve the first sub-problem of Step 2. The
second one is easily solved directly, see Remark 3.1 below. For convenience we shall
henceforth delete the index 1 in the notation of the state component of the multiplier.

Algorithm A%

e Step 1. Initialization: Set n = 0 and choose v > 0, ¢ > 0.
Choose (g,,7,) € L x L*(T"), A, € L*(Q) and u_; € L*(T) .
e Step 2. Choose k, € IN, set A2 = \,, u;' =wu, jand for j =0,... ,k,

n

[y, = Argmin Ly(y,4} ", qn, 72) + (MY, w7), (M, 0))
yeWw
. M M
N = Myl + “Cﬁ — Px(Myyfl, + ?”)] )
w, = Argmin L,(y2,u,qn,T)
L ueU
End of the inner loop: Apyq = M+l gy = ¢fn g, = ubn,
e Step 3. A
kn _
Gntl = Gn + hL > (Ayl — f), where p; € (0,29],
kn+ 15
P2 b ;
T4l =Tp+ o —— Z(yiu" —u},), where p; € (0,7].
o+ 15

Remark 3.1. The second minimization problem is indeed equivalent to

og + T + VY,

v = Argmin |u—
a7y r

n

uweU,

QUi+ Tat Y
a+y

that is v, is the L?(T")-projection of nU.

We may now end this section with a convergence result for Algorithm A4%S.

Theorem 3.4. Let (§,4) be the solution to (P) and suppose that (H) holds. Let
(q,7,i) € L) x LX) x L x LT) be a Lagrange multiplier associated to the
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state equation and the state constraint. Then the iterates (Yn, Un, Gn, Tn) of Algorithm
ACS satisfy

_ k,+1 _ kn+1 B
lyn — glé+ (e + )Iun A2t =g t1 — GG+~ [Tasr — IR
.y 2,?)1 ) 2p2
2 _
+y = )l Ay — 115 + ftn = tnlf + 5 Ana = Al
(3.23) c
< lcn+1| _glk+ k"+1|r A
1 — 291 an q Q 2[)2 n T
P = Bl + 5P s = Yca o+ G s —
foralln=1,2,.... If k, is nonincreasing this implies
S v
5° (tye — 918+ alue — a2+ (v = ) — ST+ o= 30lf) <
n=1
ki +1 ki +1

_ 1 _ Y — P2 vy _
% lgn —ala + ‘2,02—|7“1 — 75+ %P\l — A7+ leo — Ul + §|Uo —alp .

Proof. We combine the techniques used in the proofs of Theorems 3. 2 and 3.3 which
allows to omit some details. Once again we use the optimality conditions issued from
Step 2 of Algorithm A%S . The iterates (y4,u]) of Step 2 satisfy, for j =0,..., kn,
foralye W

(gt
(324) ) (A — £, Av)e ( v,
+(r - knpil)(y%—un ( Alyn, %) Aly)) =0,

and forall u e U

(ned)u=ad)) = (2 Oh =) u—nd),
P

)yh —uh,u—ul)r 2 0.

(3.25)

—(v—an

Relation (3.12) implies

(7@.0. @u-D)_+@ 400

X
+(Fy— (w—a)r+ (ﬂ, Aly) >0
LxL2(T)

(3.26)
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for all (y,u) € W x U. Combining (3.24)—(3.26) and (3.14) of the proof of Theorem
3.2 implies

k,+1 k,+1

7 _ 52 J _ 7|2 J_g2 -~ —F
|y, — 9lo + alu, — ulp + o a7, — dla o o —alo
P1 2 kn+1 ; 2 kn-l'_l —1 .
P N\ AY jo_ @2 T 21
+(’Y (k‘ +1))| yn f|9+ lrn r|1" 202 lTn Il"
P2 =Y ;
+ —_— — Ay — f, Ayl —
(v— (k H))Iyn ARE kﬁl;( Y, — f, Ay — o
e +1 h = U Y — W) + c(lAi“—ﬁl%—lAi;—ﬂI%)
+7(U£L—U¥I,yi—z7) <0,
r
forn,j =0,1,...,k,. Summing the above inequality over j we arrive at
k
no C +1 g kpt+1 - 1 _
> (lvi — gletelul, — alp)+ b Iq = Qg+ = =l — i+ o — AlZ
=0 P2 c
'y—— ZlAyn Fla+( 7—— ZIyn—u]|r+72(U’ —ul 1,yn—y)
7=0
kn+1 12 kn+1 =12 0 2
< n — n — —|A, — .
<o lgn — alo + 21 Ir 7’|1“+2c| n— BlL

Now we estimate (! —ui ™1 yd — 37) as in the proof of Theorem 3.3. We obtain,
r
forj=1,2,... and n=0,1,...

. P . . s ’Y . . . _ . _
(it - g - 1) > el =i - J 0 — 7 Bl )

A similar calculus provides the estimation of (u‘T’L —urt Yo — gj) forn=12,...
r

— 0 = P2 o — p2 —7 —
(3 27) 7<unl—un?y_yroL)FZ (a+3)|un—un1|%+ 22 n1|12"
’ Yo = Y~ _
We henceforth assume n > 1. We obtain
En ‘ . . —
72 (U%—“%_l>yi“ﬂ> (a + )|’Ll, —Up— 1|1" 2 -1~ Up—1 12"
=0 r
g o :
(3.28) + = 5 |ug — alt — —Iun 1 — AR ad vl —ul R
j=t

kn
0 i1 e 1 - .
Z it =Rl alf — e, - alf)

l\') |
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We finally get for k, > 1

k
no . kn+1 _ kn+1 _
> — 9l + ol — aff) + =5 —lgnrs — @& + =5 —Irns — 7t
=0 01 [)
L 12 pr\ & i 2 1P i .27 —12
oo — AL+ (V= F) 2 MAvn = flat+ 5 2 lvn — ik + G lun — e
=0 j=0
k,+1 o kn+1 19
< —qlo + Tn—T
= Top IQn Q|Q 20 | n |1"
1 - Y p2 v _
t ogn = BIL + 5 e = Ynala + G lunor — -
Since p; < 7 we deduce that if k, > 1
kn+1 k,+1
T a2 n A2 n _H2
|yn — lg + alun — alp + 20 |gn+1 — qlg + 202 741 — FIr
P v — P2 1 - v _
+ (v = DAy = Flo+ 5 lwn = unlt + 5 Pnss = BIG + S lun —
k,+1 o kn+1 e 1 s
< n n 5. )\n -
< o . — dla + P [7a = 7lr + 512 = Blo
+ 122w Bt s — af?
2 2
Using (3.27) the same estimate follows for k, = 0. The final claim again follows with
a telescoping argument. ]

4. Numerical Experiments

4.1. Implementation. Numerical experiments were carried out for one and two di-
mensional problems but we present only a 1D-example. Since Algorithm AC5 is the
simplest for implementation we have used it for our tests. The discretization of the
problem was done with finite-differences discretization schemes. The size of the grid

1
was — so that L = RV*1. A was chosen as the discretization operator with respect

to the given equidistant grid.

The main difficulty that remains in applying Algorithm A% is given by the (un-
constrained) minimization with respect to y. This was done via the adjoint state
equation and results, for fixed u, ¢ and r in the resolution of

A A
A*p=y—zd+c[y+z—PK(y+z)] inQ, p=0onl,

qt+p . r 1 Op
Ay=f— mQ,y=u——+- nl,
y=1f Yy ~ S

(4.1)

denotes the conormal derivative of p with respect of A*

for p and y. Here

9p
aVA*
(which is the adjoint operator of A). The control function was computed using the
T+ aug + 7Y o

a+y

L*°-projection of n U.
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All numerical tests were carried out on an HP workstation using the MATLAB®©
package. The required accuracy and stopping criteria were set to 1076,

4.2. 1D-Example. In this example we chose  =]0,1[ and N = 30, A = —A and
f(@) = —(z+2)exp(z), zg = —1, a=0.1, u4(0) = =2, uy(l) =1, U =[-3,3] and
K={YeL|-11<Y<1}.

Note that z; is quite close to the boundary of K.

In fact, as can be seen from Figure 1, the lower bound on the state is active. The
active set is a singleton. In view of the fact that the influence of the boundary
control at x = 0 and x = 1 is restricted to the superposition of straight lines to the
uncontrolled state, this is not surprising.

Solution for ud=[-2,1] and zd=-1

02 —
O-
02
04t
06}
08
9 k=
12 o
0 o1 02 03 04 05 06 07 08 08 1
Figure 1
¢ | 7 |kn (constant) | JAy + flloo | [t —vllc | n | CPU units | min[y-(-1.1)]
10 | 1 10 4.8 e-07 4. e-07 58 1 4. e-10
101 1 9.3 e-07 6. e-07 |154 2.17 2.5 e-06
10 | 1 100 2.2 e-07 5. e-07 13 1.35 -2 e-09
100 | 10 10 6.2 e-07 9. e-07 95 1.01 -1.3 e-11
Table 1

One of the main questions concerning the class of algorithms that we analyzed is
the choice of the parameters p;, ¢ and 7. From Table 1 we conclude that while the
choice of the parameters certainly has an influence on the convergence properties of
the algorithm, there is a wide range of parameters values for which convergence is
achieved numerically, for this and other examples that we tested. In all calculations

1
we chose p; = 1. Some tests shows that the ratio To " isa good one. For
(e,7) = (1,1), (¢y) = (100,50), (c,7) = (1,0.5) (all with k, = 10 for all n),
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convergence is achieved but it is slower than for those pairs that are presented in
Table 1. From that Table, as well as from other tests, it can also be seen that
the auxiliary problem should be solved sufficiently accurately, before the Lagrange-
multipliers (g,r) for the state equation and the boundary condition are updated (see
k, = 1). The values (c,7) = (10,0.1) still with p; = 1 led to divergence. This is not
unexpected in view of the result of Theorem 4.5 which requires p; < .

The numerical values for J and the control at the minimum are:
J = 15862 10! and @(0) = —9.9573 107}, 4(1) = 2.6314 107> .

4.3. Conclusion. The augmented Lagrangian algorithms with splitting into state and
control variable can effectively be used to solve state and control constrained opti-
mization problems. For the first order methods that are presented in this paper the
auxiliary problems in the inner-loop must be solved sufficiently accurately before the
Lagrange-multipliers of state equation and boundary condition are updated. Ap-
propriate choices for the penalty parameters (here c and ) and the step lengths p;
for the dual variables are easily determined since the algorithm are not particularly
sensitive to them.
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ABSTRACT. We study an approximation of the boundary control problem for the heat equa-
tion over a finite horizon. Our goal is to obtain an approximation of the value function and of
the corresponding “locally optimal” trajectories. We examine here a time discretization also
proving some a priori estimates of convergence for the value function of the time-discrete
problem. Some hints are also given for the construction of a fully discrete scheme.
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1. Introduction

We deal with the finite horizon control problem for a system governed by the heat
equation focusing our attention on its numerical approximation. In particular, we
will examine in detail the case of boundary controls. We refer to Lions [17] for the
theoretical framework of the continuos problem.

It is well known that via the Pontryagin’s maximum principle, one can characterize
the open-loop solution in terms of a coupled system involving the state y(u) and
the adjoint state p(u) (u is the control). In this formulation the adjoint state satis-
fies a backward heat equation in [0, 7] having y(z,T;u) as initial condition so that
the numerical solution of the coupled system requires a long iterative process. This
approach has been followed by Hackbush ([13], [14]) who has applied the multigrid
technique to obtain the solution of the system describing the necessary conditions for
optimality. Note that the approximation of the system of necessary conditions re-
quires a good initial guess for the multipliers (the adjoint states) to start the iterative
procedure and to guarantee a local convergence to the solution. Searching for the
initial guess is often one of the more difficult tasks in that approximation method.

Having in mind those limitations, we consider here a different approach where Dy-
namic Programming plays a role also in the construction of the approximation scheme.
The main goal is to reduce the global complexity of the algorithm and to avoid the
cumbersome solution of a Hamilton—Jacobi type equation in the whole space of initial
data (which in our case would require the solution of a nonlinear PDE in L?(()).

This work has been partially supported by the Ministry for University and Scientific Research
(MURST Project “Analisi Numerica e Matematica Computazionale”).
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Our method is based on a backward—forward procedure where we try to compute a
trajectory minimizing the pay—off in a neighbourhood of a reference trajectory (which
is assumed to be given). From this point of view this paper is close to the numerical
experiments presented for finite dimensional control problems in [1].

We will establish convergence for a time-discrete scheme and we will also give some
hints for the construction of the fully discrete algorithm based on a space discretiza-
tion (by finite elements or finite differences). A similar approach has been followed
by Ferretti for distributed and boundary control problems ([8], [10]) without state
constraints and localization around a trajectory. Among the huge amount of liter-
ature on the control of parabolic type equations we quote the paper [2] where the
approximation of the linear regulator problem is considered and [16] where abstract
convergence results for approximation methods have been given mainly for the linear
quadratic problem (see also the reference therein and [15]). More recently Banks
and Ito [3] have studied the numerical aproximation of boundary control problems
by means of augmented lagrangian techniques.

The paper is organized as follows. In Section 2 we set up the problem, introduce our
notations and prove some useful properties of the value function for the continuous
control problem. Those properties are rather important for the construction of the
discretization scheme and also play a role in the proof of the dynamic programming
principle which is given in the Appendix. The time discretization is treated in Section
3 where we prove a discrete Dynamic Programming Principle which will be used to
obtain the approximation scheme and to prove our convergence result. Section 4 is
devoted to the presentation of the basic ideas for the numerical algorithm.

2. Some preliminary results for the continuous problem

Let € be un open subset of R?, I' = 8 and ty, T be two real numbers such that
T >ty Weset Q=X (t5,T) and X =T x (t,T).
We will say that I is regular if it is piecewise C? in the sense given by the definition
of [18, p. 25].

Let E be an Hilbert space, we will use the following spaces

T
L*(ty, T; E) = {h : [to, T] — E such that / | A(s) ||% ds < +o0}
to

W (to, T) = {h € L*(to, T; E) such that % € L*(t, T; E')}

where the derivative Oh /8t should be understood in the distributional sense. We will
consider a boundary control problem with Neumann condition for the heat equation:

Zu(@,t) — Ay(z,t) = g(z,t)  nQ
(2.1) Ly(z,t) = u(z,t) onX

y(z,to) = n(z) inQ
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where 7 is given in L?(Q), g € L*(to, T; H()), and the controls u belong to U =
L*(Y), i.e. we start investigating the problem without constraints. Later on in this
section we will also introduce some constraints on the control space.

We will always consider solutions of (2.1) in the weak sense. We will denote that
solution by y,(z,t;u) and when it will be possible without ambiguities we will also
use the short notation y,(t; ) or y,(t).

In order to have existence and uniqueness for the solution of (2.1) for every fixed
u € U one can apply the standard results for the heat equation (see f.e. Theorem 1.2
p.102 in [17]). The solution depends continuously on the data and lives in W (to, T).
Sometimes we will refer to L2(Q) as the space of observations, i.e. the space where
the solution lives for every fixed ¢ in [to, 7.

In order to simplify our notations, let us define

lu(®) I3= [ 1u(e,t) P do,

o) 1= [ (e, ti) [P de

The final time T being fixed, for every initial condition (7,ty) and for any control u
we define the pay—off:

(2.2)  J(nto,u) = /t ' Fyn(t; u), u(t)) e AE0VdE + 4p(y, (T; ), e )

where f : L3(Q) x L*(T) — R, ¢ : L*(Q) — R and X > 0. Note that the discount
factor e *(—t) appearing in the functional (2.2) is usually included to up-date all
the cost at the initial time (when the decision has to be made) and to decrease the
costs over long time intervals.

We will make the following assumptions:

(a) there exists a constant By such that

(2.3) | (v, w)| < By, for any (y,u) € *(Q) x LA(T)

(2.4) f is continuous with respect to (y,u);

(b) there exists a constant Cy > 0 such that for any z,w € L*(Q) and for any
u € L3(1),

(2.5) |£(2,u) = f(w,0)| <Cp || z=w]),

(2.6) f is convex with respect to (y,u);
(c) there exists a constant By, such that

2.7) [(y)| < By, for any y € L*(Q);
(d) there exists a constant Cy > 0 such that for any z,w € L*(Q)
(28) [¥(z) —p@)| < Cyll 2w,

(2.9) 1 is convex.
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We want to minimize J, i.e. we want to find an optimal control v € U such that
(2.10) J(n,to,u) = inf J(n,to,v).
vel
The value function for our problem is defined as
(2.11) v(n, to) = inf J(n,to, u).
uel
Definition 2.1. The system (2.1) is said to be controllable if for u € U, the observa-
tion y(T;u) spans a dense subspace in the space of observations.

For the proof that our system is controllable when U = L*(X) see [17, p. 207]. It
is clear that, in general, the existence of an optimal control attaining the minimum
of J is not guaranteed. In order to prove it we need some additional assumptions.

Theorem 2.2. Let (2.3), (2.4), (2.5), (2.6), (2.7), (2.8), (2.9) be satisfied. Let
Ui = {u € U ;| u |li2)< R} and assume that f(y,-) is continuous for anyy €

L3 (Q).

Then, there ezists a control u € Uyq such that

(2.12) J(n,to,u) = inf J(n,t,v).
veUsd

Proof. Let us define ¢ : Uyg — R as ¢(u) = J(n,tp,u). In order to get the result
we will apply Corollary I111.20 in [6] (for readers convenience its exact statement has
been included in the Appendix) so let us check that all the assumptions are satisfied.
It is easy to see that Uy is a closed, bounded, convex subset of the reflexive Banach
space L?(X). By (2.3) and (2.7) we have that ¢ # +o0.

To prove the convexity and the continuity of ¢ we first observe that for any o € (0,1)
and for any u,v € Uy,

(2.13) Yo(z, 5 0u+ (1 — a)v) = ayy(z, tu) + (1 — Q)y,(, t;v).

In fact, we can write y,(z, % au + (1 — @)v) = a(2,t) + baut(1—a)(, t) where a(z,t)
is solution of (2.1) for u =0, i.e.

2y(z,t) — Ay(z,t) = g(z,t) nQ
(2.14) 2y(z,t) =0 on %

y(z, to) = n(x) inQ

and buy+(1—a)e(Z, t) is solution of (2.1) for g = 0 and n = 0 with the control au+ (1—
a)v, Le.

%y(x>t) - Ay(xa t) =0 in Q
(2.15) 2y, t)=au+(l—ajy onX

y(z,t0) =0 inQ.

By linearity of the equation we have that baui(1-a) (2, t) = abu(z, t)+(1—-a)by (2, t)
and this give us (2.13).
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By the convexity of ¢ and f and by (2.13) we can easily prove that ¢ is convex.
Let us prove that ¢ is lower semicontinuous.

Let u, € U,q be a sequence converging to u in L?(X). By the weak formulation of
the heat equation and exploiting the linearity of the dynamics we get the following
estimate

(2.16) Il (528) = (85 un) (<l v = wn [|z2m) -
The continuity of ) (y,(T;u))e *T %) with respect to u then follows by (2.8) and
(2.16).

Let us examine the integral term appearing in the definition of ¢.

/: S a(ts0), u(2))e 00 =
= /tj[f(yn(t; U), ’u,(t)) — f(yn(t; 0), u(t))]e_.)\(t_to)dt "
+/t:[f(yn(t; 0),u(t)) — f(yn(t;o)’o)]e—)\(t—to)dt+

+ [ Flunlt50), 0.

By (2.16) and the Lipschitz continuity of f(-,u), we get

(2.17)

. 1ot ) ~ Fon(t:0) Dl < O s -

Note that the continuity assumption on f(y,-) implies, by the Fatou’s Lemma, that

1) = [ fantiw), )

is a lower semicontinuous function over U,;. Then, we can conclude that ¢ is lower
semicontinuous over U,y since the last term in (2.17) is constant with respect to u.
The proof can be completed simply applying Corollary 111.20 in [6]. O

Assuming that f and ¢ are strictly convex, we can conclude that the optimal
control is unique. Note that hypothesis (2.6) is fullfilled when the running cost f has
the form f(y,u) = fi(y) + fo(u) with f; and f, convex.

The Lipschitz continuity of the cost function with respect to the initial data is
established in the next theorem.

Theorem 2.3. Let Q be a bounded open set with a regular boundary and let the as-
sumptions (2.5) and (2.8) be satisfied. Then, there exists a constant C > 0 such that
foranyu in U

218)  |[JOto,w) ~Jwtow)| SClu—pl,  VnpeLX9).

Proof. We can write y,(z,t;u) = a,(z,t) + b(z, t,u) where ap(z,t) is the solution of
(2.1) for g =0 and u = 0, and b(z, ¢, u) is solution of (2.1) for n = 0.

The map a,(z,t) = A(t)n(z) is linear in n by linearity of the equation. Theorem
7.2-2 p.161 in [18] gives for g = 0, the continuous dependence of the solution with
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respect to the initial data. We can conclude that it exists a constant C, > 0 such
that

(2.19) I A@n() IS Callnll , VE€ [to, T] -

Let us denote by y,(z, t; u) the solution of (2.1) and by y,(z,t;u) the solution of the
same system with initial data p(z).
The linearity of A and the inequality (2.19) imply

(2:20) [l g(t;w) — gu(t;w) =l A — ) IS Callm— el VEE [to, T].
Recalling the definition of the pay-off, by (2.5) and (2.8) we get

| J(n,t0,u) — J (i, to, u) | < /tOT | (n(t; ), u(t)) — F(yut; w), u(t)) e 0t +
[ (ya(T)) = $(gu(D)]e T <
= /tT Cy Il yn(t) = yu(®) Il dt + Cy || 9o(T) = (D) Il -

By (2.20), we can conclude that there exists a constant independent from w, C =
CrC,T + CyCa, such that

(2.21) | J(n,to,u) = J(wto,w) [SC I —p ||
a

As an easy corollary we get the Lipschitz continuity of the value function with respect
to the initial data.

Corollary 2.4. In the same hypotheses of Lemma 2.3 there exists C' > 0 such that for
any n, p € L*(Q) we have

(2.22) lo(n,t0) = v(u,to)| < C llm— el -

We state now the Dynamic Programming Principle which will give a characteriza-
tion of the value function also useful for numerical purposes (see the Appendix for
the proof).

Theorem 2.5. Let the value function be defined as in (2.11). Then

228) oln,to) = o { [ Flan(tia), u(®)e e +o(uy(r), 7)e 0}

foreveryT, to <7 <T.

It is well known that the Dynamic Programming Principle gives a characterization
of the value function where the value at the initial condition v(n,%,) depends on
its value at the point y,(7) belonging to the optimal trajectory. This is the basic
principle of optimality for the trajectories. This principle is also useful to derive the
Hamilton-Jacobi-Bellman equation giving a characterization of v in terms of a partial
differential equation. In what follows we will use a discrete version of this principle
(Theorem 3.1) to get a semi-discrete approximation scheme for the value function.
Moreover, (2.23) and its discrete version will play an important role when proving
the convergence of that scheme to the value function of our problem.
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For the numerical approximation, we are interested to a particular choice of the
cost function (2.2). Note that an explicit dependence on ¢ can be easily included in
the running cost. We will take then

(2.24) F(t,ynow) =l u(®) [} + || yalt; ) — ) II?
where ( is a given function from L%(Q) in R and
(2.25) P(Ya(T)) =l yo(T) = 2r |

where zr is a given function from L*(2) in R.
Moreover, we also want to restrict the space of admissible controls and of the initial
conditions assuming that

(2.26) u € Uyq = {u € U such that | u(-,t) ||z2y< R for any t € [to, T},

(2.27) n € K = {u € L*(Q) such that || 4 [[c< M}.

Note that the restriction on the controls which appear replacing U by U,y may
imply the loss of the controllability property for our dynamics. However, under the
assumptions of Theorem 2.2 there exists a minimum for the pay-off. In practice, we
can think that {(¢) is a trajectory starting at # and reaching a neighbourhood of our
terminal state 2 obtained by an analysis of the controllability problem or by some
experiments. It is what we know about the problem before starting the optimization
process. We want to minimize the pay-off given by

T
/t | u(t) 17 + I ot ) = C(£) 17 et || yo(T) — 2 ||? €777
0
Note that the term

T
[ ) =) 12 et
to

has been added in order to penalize the L?-distance from ¢ in the interval [to, T]. We
will come back to this point in the last section, where we will explain the algorithm
giving more details.

In the following Lemma we will show that under some restrictive hypoteses we can
apply Theorem 2.3 to the pay—off J corresponding to (2.24), (2.25) so that our value
function is Lipschitz continuous with respect to the initial data.

Lemma 2.6. Assume that Q is a bounded open set with regular boundary, and that
(2.26) and (2.27) hold true. Then (2.5) and (2.8) are satisfied.

Proof. Let us start from the weak formulation of the heat equation. After some
calculations one can obtain the following estimate

(2.28) Fy(tsu) P<ln 1P +(1/a) Il g 12y + 1w e
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for all ¢ in [y, T] (o > 0). Then, (2.26) and (2.27) imply
(2.29) | y(t;u) |[< K, forallt e [to,T],

where K = (M?meas(Q) + (1/a) || g “%2(0,T;H1) +R2)1/2.
Fix n and p in L2(Q), t in [to, T] and u in U,qg. By the definition (2.24) we get

Faty ), u(t)) — Fults w), u(t) =)l yalt;w) = € I = I wultsw) =€) IP<

<l ot w) = gultsw) | { 1l wn(ts0) — wultiw) || 42 || gultiw) = <OV 1| }-
By (2.29) we have
Fya(tiu), u(t)) — Fyults w), u(®)) < 2K + 20K+ 1| ¢ D] 1| 9ot w) — wu(tsw) | -

Inverting the roles of y and 7, after some calculations we get
| £t ), u(®) = flyaltsw), w()] < O [l yn(ts ) — wultiw) |

where Cy = [2K + 2(K+ || ¢ |})]. This proves (2.5).
The proof of (2.8) is similar so we skip the details. [

By Theorem 2.2, one can easily see that under the same hypoteses of Lemma 2.6 we
have existence and uniqueness of the optimal control for the particular cost functional
defined by (2.25) and (2.24). Note that the proof of the the Dynamic Programming
Principle is still valid also when we assume (2.26) and (2.27) (see Appendix).

3. Semi-discretization and convergence

Let us introduce the discretization in time of our problem. For the sake of simplicity

we will consider only the case when the time-step is constant, but the results can
be extended to a variable time—step using standard arguments. Given N € N we set
At = [T —t]/N and t, =to +nlAt forn=0,...,N.
__Let the set of controls U be replaced by the set of admissible discrete controls
U c U. The set U will play an important role in our discretization. Just to fix ideas,
one can imagine that U is some sort of finite representation of U more suitable for the
construction of the algorithm (we will come back to this point in the next section).

We replace our dynamics (2.1) by a discrete time dynamics obtained, for example,
by an explicit Euler scheme

y(z, tnr1) = y(2, 1) + AL [Ay(z,ta) + 9(z,t,)]

(3.1) 2y(z,tn) = u(z,tn)

y(z,t0) = n(z) -

The solution will be denoted by 7y,(, t»; u) and, whenever is possible, we will use the
short notations 3y (t,; u) and gy (t,), for every n =0,..., N and for every u € U.
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For any ng € {0,..., N — 1} we define the pay—off corresponding to the discrete
time dynamics (3.1) as

N-1
(32) T tagyu) = A6 Y F(Gyfta), ulta))e )+ §(G(T5 )40

and for ng = N we define,

(3.3) J(n,tw) = b(n).

The corresponding value function is
(3.4) 51, tng) = inf J(1), tng, u), ng. € {0,...,N}.
uelU

We will construct our scheme by means of the following discrete version of the dyna-
mic programming principle.

Theorem 3.1. Let the value function be defined by (3.4). Then,

p—-1
(3.5) (n,tny)= irelg {At S F(G(tn), u(ta)) €20 £ 5(5, (£,), 1) e—Wp—fno)}

n=no

for every integer p, ng < p < N.

Proof. Let us denote by @(), t,,) the right-hand side of (3.5).
We consider two cases.
1) Let p = N. We have

(36) w(n,tm)=inﬁ{Athf@n(tn),u(tn»e-*@n—tw+a@,,<T>,T)e—A<T—tno>} |
uelU

n=ng

By the definitions (3.4) and (3.2), we have
o(G(T), T) = inf J(Gu(T), T5w) = inf $(Gu(T)) ,
ue u€

so that (3.6) coincides with the definition of value function.
2) Let p < N. We divide the proof into two parts.

@) B(7, tno) > B(7; tno)-
Let us fix a control u, by (3.2) we have

~ p—1
T, tngy ) = A 3 F(G(tn), u(ta) et +

N-1
+ A8 Y f(@(ta), u(tn))e T 4 (Gy(T))e T i)

n=p
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Defining p = §,(t,; %), the uniqueness of the solution of (3.1) implies ,(z, tx; u) =
Ju(z,tn; u) for every t, > t,. Then,

~ p—1
J(le tnoyu) = At Z f(ﬂn(tn), u(tn))e'—)\(tn—tno) +

N-1
+ ALY F(Gultn), u(ta) e 00) 49 (Gu(T))e T im0) =

n=p

p—1 N
= AL S F(@tn), ultn))e ™00 4+ J(s, by, u)e Mo 70) >

n=ngp

p—1
>ALS F(Gy(ta), ultn))e M m0) 4 Gy, t,)e N~

n=ngo

by definition (3.2) and (3.4). Taking the infimum over U we have

p—1
B(1, tno) > inf {At 3 F(G(tn), ultn))e 2 m0) + 5(u, tp)e‘“t”‘t"“)} -
uwelU

n=no

B) (1, tng) < B(1; tns)-
Fix @t € U let p = §y(tp; @). For any fixed & > 0 there exists a control u. such that

(3.7) O, tp) +& > T(p by, uc) -

Let us define the control

(@, tn) = { Ue(T,tn) by <tn <T.
We first note that the uniqueness of the solution of (3.1) implies

37 A7) = @\n(x7tnvﬂ) tno S tn S tp———l 3
(38) (2 i ) { AT

Recalling the definitions %, (3.2), (3.8) and the inequality (3.7) we have

(M tng) < T(tng, ) = At S F(T(t7),T(ta))e o) 4

n=ng

N—
FALS® (s ), 0lta)e 10 4 (G (1)) =

n=p
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p—-1
= At > f(@(t0), Gt,))e ) 4
n=ngp

N-1
+At Z f@u(t; ug), UE(tn))e_)\(tn_tno) + ?b(f/\u(T))e_)\(T_t"O) =

n=p

p—1 N
= ALY f( @t ), @(ta))e ) 4 J(p, t,, u.)e rmi0) <

n=ng

p—1
<AL S f(@n(ta), @(ta))e Xnt0) 4 (G(u, t) +€) e Mrmtno),

n=ng
For ¢ tending to 0 and taking the infimum over @ € U we end the proof. [

Let us turn now to the proof of convergence. The basic idea is simple: coupling an
Euler discretization scheme for the dynamics with a quadrature formula (rectangles)
for the cost we can get a reasonable approximation of the value function. Two main
questions have to be clarified. Which conditions on the two discretization schemes
guarantee the convergence to the value function of our approximation scheme ? How
accurate is that discretization scheme ?

To obtain results in both directions we make the following assumptions:

(H1) Foranyn € K, u € Uy, 0 < At < T —tg and € € [tg, T there exist @ € U
and two positive constants C; and C, such that

(3.9) I 9n(€,u) — Fa(€,B) |I< Cr(AL)? |

(3.10) |At f(G,(8), 8£))e™ 6 — /g £+Atf(yn(t),u(t))e‘*"f‘“’)dt\ < Cy(At)?

(H2) For any n € K, @ € U,0< At <T —tgand £ € [to, T — At], there exist
u € U,q and two positive constants Cy, Cs such that (3.9) and (3.10) hold.
Note that the constants C; and C, appearing in (3.9) and (3.10) are independent of
any other variable, so that the above inequalities provide uniform estimates for the
time discretization of the dynamics and of the cost functional.
The following result gives an estimate of the L* error related to our time dis-
cretization. The proof follows the lines of Theorem 3.1 in Falcone-Ferretti [11] where
a similar estimate is obtained for a finite dimensional control problem.

Theorem 3.2. Let (H1), (H2) be satisfied. Then, for anyn € K, £ € [to,T] and
0 < At < T — ty, there exists a constant C > 0 such that

(3.11) [ v(7,€) = 9(1,€) [lo< C At

Proof. Let us assume that there exists a control 4 € U such that the minimum is
attained in the discrete Dynamic Programming Principle (if not the same proof will
work with slight modifications). Let @ be an optimal control corresponding to 4 such
that (H2) holds and set 3 = ™A%, Note that in the following calculations we do not
require neither ¥ nor ¥ to be unique.
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By applying Theorem 2.5 for 7 =, and Theorem 3.1 we have
1t
v(n, &) —9(n,§) < ‘/; Fya(t, @), (t))e~ 2t dt +

(312) At S ), At +
n=0
+ B[ (Y (tp, ), tp) — (T (tp, ), tp)]-
The above inequality and (H2) (b) imply
v(n,€) —9(n,¢) < PCo(ALY + BP[u(yn(tp, W) tp) — V(Y (tp, B), tp)] +
+ B0 (yy(tp, @), tp) — D(Tn(tp, B), )] <

< pCZ(At)z +6°C | yn(tpaﬂ) - yn(tpvﬂ) I+
+ ﬁp[v(yn-(tpv ﬁ), tp) - 6(?777(1&10) ﬁ)a tp)]

for the Lipschitz continuity of the value function.
Then, assumption (H2)(a) implies

U(na 5) - 17(777 g) S pCZ(At)2 + CCl(At)zﬂp + 6p[v(y7](tp’ a)? tp) - 17(@77@177 ﬂ)a tp)] .
Then we can conclude that

(313) (1= sup (v(nt) = 0(n,1)) < pCa(A)’ + COLUALST
"o

In the same way one can prove a similar inequality for sup (17(77, t) —v(n, t))

TeLe ()
0
In conclusion, we get
At)? At)2pP
(3.14) | v, T —1t) — (0T —t) fleo< pCy(A) 1""_%(;1( t)*p

and since 1 — P = O(pAt) this ends the proof. O

The above conditions (H1) and (H2) can be interpreted as assumptions on the
order of approximation of the time discretization for the dynamics and for the cost
integral. In finite dimensional control problems one can also obtain sufficient con-
ditions on the data guaranteeing (H1) and (H2) (see [11]). The inequality (3.9) is
satisfied if the discrete dynamics is close enough to the continuous dynamics and
this of course will depend on the .accuracy of the approximation scheme and on the
discretization of the control space (note that we are taking the control in a set U
which stands for a discretization of Usg).

Let us examine in more detail the second inequality (3.10). In order to guarantee
that (3.10) holds true for the approximation of our parabolic problem we need to know
that the time derivative of the control v and of the solution of the heat equation exist.
This can be obtained adding some regularity assumptions on the data of the problem
(see f.e. Theorem 2 in [12, p. 144]).
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For example, let us assume that f is Lipschitz continuous with respect to the
couple (y,u) and that the space U is such that for any u € U,q there exists at least
one control 4 € U guaranteeing

||u — ﬁ”L?([O,T]) < CAt

for some positive constant C. Then,

/ £(@n(6), 8N — £(un(®) u(®)e ™ ae] <
< [T @), 26 — a0, u(e))e
+ /e §+Atlf(yn() u(t)))] e %) — gmME~t0)| gt <

E+AL R .
< /g [Cillu - @llsaqoy + CaAd]dt < C(AL).

dt +

(3.15)

This tells us that it is important to built an accurate discretization of the control
space (f.e. by means of piecewise polynomial functions of time) and couple this
discretization with sufficiently accurate approximation schemes for the dynamics and
the cost to get the error bound proved in Theorem 2.5.

4. Some hints for the algorithm

In order to solve numerically our boundary control problem we use a local version
of Dynamic Programming trying to reduce the huge amount of computations usually
needed by that approach. Let us assume that we want to compute the minimum
over a subset of all the possible trajectories, f.e. we can imagine that there exists a
trajectory ¢ starting at our initial condition 1 and reaching a neighbourhood of the
final state zp.

The Bellman optimality principle gives the characterization of the value function
for every initial condition n € H(£2) but, in order to have a feasible algorithm, we
have to restrict ourselves to a compact set in that space. One possibility is to restrict
the analysis to a neighbourhood of ¢ enforcing some state constraints and to deal
with the Hamilton—Jacobi equation associated to the infinite dimensional problem
with state constraints. At present the theory and the numerical methods for such
problems in infinite dimension seem to be rather incomplete and unsatisfactory so
we prefer to attack the problem by means of a penalization method. In practice, we
add to the pay—off a (penalization) term rapidly growing outside the tube around ¢.

Our algorithm to compute an approximate locally optimal trajectory will be di-
vided into two parts. At first, in the backward procedure (from T to t;), we compute
a sequence of almost optimal controls and states guaranteeing the final condition and
the state constraints. Then, in the forward procedure we actually solve our problem
using the informations obtained in the backward steps.

Let N be a positive integer and let At = (T —to)/N, as in Section 3 we consider
a discretization with time step At and we define ¢, = o +nAt. In order to simplify
let us assume that there are only m different controls, i.e. U = {u1,...,un}. Note
that we can always construct a discretization of the control space Uy leadlng to that
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FIGURE 4.1. A sketch of the backward-forward procedure.

situation, f.e. using piecewice constant or piecewice linear functions to approximate
an element in U,y. The set U is the finite dimensional representation of our original
control space. A simple choice is to take controls which are constant on each time
interval I, = (n, tnt1)-

Figure 1 gives a sketch of the algorithm. The thick solid line represents the trajec-
tory ¢ while the area contained between the two dotted lines represents the tube.

The backward procedure works as follows. Starting from the final condition 2r, we
determine a new trajectory (possibly different from ) joining 27 to an initial state
(possibly different from #) at time #y. More precisely, starting from ¢V = 2z, at each
time step we take the solution g"*! of the dynamics at time ¢,41, n =N —1,..,0, as
our target and we want to determine a state g" and a control @ at time ¢, such that
we minimize the running cost related to that displacement. The sequence of all the
intermediate targets g" will give us the new “trajectory” (the dashed line in Figure
1) to be used in the forward procedure.

In fact, in the forward procedure starting from the initial condition 7 of the original
problem we try to pass through the intermediate targets g%, n = 1, .., N, always min-
imizing the costs over U. Since the cost functional depends continuosly on the initial
conditions (see [17]), we will obtain a quasi-optimal control and a good approxima-
tion (the thin solid line in Figure 1) of the solution provided the discretization is
sufficiently accurate.

The fully discrete algorithm requires a further discretization in space. This means
that in the numerical solution of the boundary control problem one has to couple
an approximation scheme for the dynamics (which can be a black-box solving the
heat equation for any initial condition and piecewise constant boundary control)
and an approximation scheme for the cost functional (which can also be a library
routine for the numerical integration over ). In the backward procedure the black-
box is used to compute the solutions corresponding to a finite number of initial
conditions and controls, comparing the results of the integral on each of them one
can get a couple (g",u™) giving the optimal discrete value. The forward procedure
uses the knowledge of the “intermediate targets” to solve a sequence of optimization
problems in the intervals I,,. In each of this optimization problems one starts from the
numerical solution at time ¢, and tries to reach g""! minimizing the cost. Note that
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the algorithm computes local minima. So in general we will obtain an approximation
of the optimal solution in the tube. Only if our tube contains the optimal solution
for the unconstrained optimal control problem we would expect to converge to the
globally optimal solution.

5. Appendix

1. We give for completeness the proof of the Dynamic Programming Principle
(Theorem 2.5) for our problem.

Proof. Let us denote by w(n, o) the right hand side of (2.23).
We consider two cases.
1) Let 7 =T. We first observe that, by definition,

'U(yn(T)’ T) = irelgw(yn(T))
We have then

o) = i { [ i) u0)e 9t 0(3(), e | =

= ing { [ St ety S0}

uelU to

which coincides with the definition of the value function.
2) Let 7 < T. We will show the two inequalities:

(I) U(n,to) > w(?’], t())

For any fixed u € U, we can write
J(,to,4) = / " Flyn(t ), u(t))e™ e +
0

4 [ Flonfts ), ue)e e+ ()T

Since the solution of the heat equation is unique, setting u = y,(7;u) we have
Yu(t;u) = yu(t;u), for every t > 7. Then the definitions of the cost function and
of the value function imply

J(n,tg,u) = /tT f(yn(t;u),u(t))e—'\(t’*")dt—I—
+ e_’\(T_t"){ /T Flyu(t; ), u(t))e MW + w(yu(T))e“A(T—T)} =
- /tT Fyn(t w), u(t))e X0 dt + e X0) J(y, (1), 7,u) >

> /t: Fyn(t;w), u(t))e XE0)dt 4 2T 0)y(y, (1), 7).

Taking the infimum over u € U, we prove our first inequality.
b) v(n,to) < w(n,ty). For any € > 0 there exists u. € U such that

(5.1) v(p, 7) + &> J(u, T, u)

where p = y,(7,u) and u is fixed.
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Define

_ ] oulz,t) <t T
u(x’t)—{ug(ac,t) 7<t<T.

Then, by definition,

v(n,to) < J(1,t0,%) = /t " F (ot ), () +
(5.2) i 0

+ [ (), 80)e ™t 4+ (g (1))

The uniqueness of the solution for (2.1) and the definition of %, imply

o) wm(Etiu) te<t<T
Un(®: ;) _{ yulz, tiu,) T<t<T.

By substitution in (5.2), we get
o) < [ Flonfti ), u)e e +
to
T
b [ Fplt5 ), we)e 9t + (g, (1)) =
= [ Flunltsw), u®)e™ 9t + T (T, 7,0)} <
to

< [ Flunfts),u@)e Dt + 67 () +e)

Taking the infimum over u € U, by the arbitrariness of £ we get the reverse
inequality. This ends the proof. O

Note that one of the crucial requirements for the proof is the fact that the set of
controls is “closed by concatenation”, i.e. if two controls u; and uy belong to Uy
then, for any 7 € [to, T, also the control

_Joui(z,t) to<t<T
u(x’t)—{m(x,t) T<tLT

belongs to the same space U,4. As a consequence the Dynamic Programming Principle
holds also under the restrictions (2.26) and (2.27) on the controls and on the initial
data.

2. Here is the statement in Corollary IT1.20 in [6]
Theorem 5.1. Let E be a reflexive Banach space, A C E be a closed, bounded, conver

subset and the function ¢ : A —] — 00,+00| be convex and lower semicontinuous.
Then, there ezists zp € A such that ¢(xo) = InEIE ().
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ABSTRACT. We formally state and prove the wellposedness and the local Lipschitz con-
tinuity of the multisurface stress-strain law of nonlinear kinematic hardening type due to
Chaboche within the space of time-dependent tensor-valued absolutely continuous func-
tions. The results also include the more general case of a continuous family of auxiliary
surfaces.
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1. Introduction

In rate independent plasticity, the Prandtl-Reufl model constitutes the basic model
for the stress-strain law. Here, the elastic region Z is bounded by a yield surface
8Z . Throughout this paper, we will assume the yield surface to be a sphere of radius
r in the space of deviatoric stresses. If loading occurs while the stress deviator o4
lies on the yield surface, there is plastic flow with a plastic strain rate P proportional
to the outer normal to 8Z in o4. It has been known from experiments for a long
time that for many materials the yield surface undergoes changes which depend upon
the history of the loading process. In the Melan-Prager model which dates back to
[12], [13], nowadays called linear kinematic hardening, the yield surface moves during
plastic loading in the direction of the plastic strain rate. More sophisticated models
have been developed to account for real material behaviour, in particular for the
phenomenon called ratchetting. Among those, the Chaboche model [10], also called
nonlinear kinematic hardening, enjoys a widespread popularity. In its standard form,
it employs a finite family of auxiliary spherical surfaces. In the special case of a single
auxiliary surface, assumed to be centered at 0 with radius R, the model is known
as the Armstrong-Frederick model [1]; here, the center o® of the yield surface, also
termed the backstress, moves according to the differential equation

(1.1) o =y (Re? - o"e7])
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projekte auf dem Gebiet der Mathematik”.

t Supported by the BMBF during his stay at Kiel.

1 Partially supported by the Grant Agency of the Czech Republic under Grant No. 201/95/0568.
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for some constant v > 0, see Figure 1. (In the Melan-Prager model, the term —0ob|éP|
is omitted.)

Figure 1: The model of Armstrong and Frederick.

In the Chaboche model, the backstress o® is decomposed into a sum

(1.2) ot => o,

kel

where each constituent o} satisfies an equation of type (1.1), namely
(1.3) &b = (k) (R(k)er —o}le?]) , kel.

In the standard Chaboche model, the index set I is finite; we will allow an arbitrary
measure space and thus include the case of a continuous family of auxiliary surfaces.

Figure 2 shows the rheological structure of the model. It visualizes the relations
between the various variables which occur in the model, stated formally in (2.5)
- (2.12) below. The element & refers to the linear elastic part, R is called the
rigid plastic element and represents the variational inequality, and Ky is the element
defined by (1.3). The element £ plays a special role; it stands for the linear element
o' = CleP of the Melan-Prager model. It may or may not be included within the
Chaboche model, but its presence or absence influences the asymptotic behaviour (see
e.g. [7]). If we remove all nonlinear elements Ky in Figure 2, we obtain the Melan-
Prager model. If we moreover delete the element £, we arrive at the Prandtl-Reuf
model.

In this paper, we prove that the Chaboche model is well posed in the space wil
both in the stress controlled and in the strain controlled case by proving that the
defining equations and inequalities of the Chaboche model (see (2.5)-(2.12) below)
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lead to operators
(1.4) e=F(o), o=6G()),

which are well defined and Lipschitz continuous on their appropriate domains of
definition. In doing this, we consider the stress-strain law in isolation, that is, we do
not study the boundary value problems which arise from the coupling with the balance
equations. For the proof we utilize the method of [2]. There we have introduced
an auxiliary variable u in order to reformulate the model equations such that the
unknown functions of Figure 2 appear only in terms of |é?] and of. The analysis
is based on the concept of hysteresis operators, that is, of operators which are rate-
independent as well as causal, see e.g. [14], [8], [9], [3].

L: e ot

Ki: e?,at

—

R: eP,aP

Figure 2: The rheological structure of the Chaboche model.

2. Model Formulation and Main Result

We first fix some basic tensor notation. By T, we denote the space of symmetric
N x N tensors endowed with the usual scalar product and the associated norm

N
(2.1) (momy =3 s, |rl={r,7),
ij=1
For 7 € T, we define its trace Tr7 and its deviator 74 by

N
(2.2) Trr = 7 =(1,6), Td=7'—%5,
=1

where 6 = (6;;) stands for the Kronecker symbol. We denote by
(2.3) Ty={r:7€T,Ttr=0}, Ty={r:7=X5,\eR},
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the space of all deviators respectively its orthogonal complement. We understand
stress and strain as time-dependent tensor-valued functions which are absolutely
continuous,

(2.4) 0,6 € Whi(to,t1;T)
11
= {7l lto,t] = T, il = Ir(to)] + [ [#(2)] dt < o0}
0

As we study the stress-strain law in isolation, we do not consider the space depen-
dence. In this terminology, the Chaboche model takes on the form

(2.5) c=0"+0P, e=¢c"+¢eP, e’(t)eTy Vi,
(2.6) (P08 —5) >0, VaeTy,l|s|<r,
(2.7) logl <,

(2.8) o= Ae®,

(2.9) o(t) = /1 o2 (t) du(k) + Vol(t) Vi,
(2.10) ob = (k) (R(k)e" —o}le?|) , forall ke,
(2.11) ol = Cle?,

(2.12) 0P(te) = ob, ob(te) = ob(k), forall kel.

Throughout this paper, we assume the data to have the following properties.

Assumption 2.1.

(i) I is a measure space, v is a finite nonnegative measure on I, the numbers v, C!
and functions R € LL(I), v € LX(I) satisfy V',R,y >0, C' >0, [; R(k)dv(k) >
0 and

(2.13) 0 < Ymin < Y(k) < Ymax, forallkel.

(ii) The initial values in (2.12) satisfy

(2.14) obeM={r:7€T,|r <7},

(2.15) o € T = {f|f € Li(I;Ta), | f(k)] < R(k) a.e.}.

(iii) A:T — T is linear, symmetric and positive definite.

We also introduce the constants

(2.16) T, = /1 +(kVR(K) dv(k), i=0,1,2,3.
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Remark 2.2. '

(i) If the index set I is finite, say I = {1,...,K}, and if v is chosen to be the
counting measure, that is, ¥(J) equals the number of elements in J for every subset
J of I, then we obtain the standard formulation of the multisurface Chaboche model
with K auxiliary (limiting) surfaces, namely

K
(2.17) a=>0t.
k=1

In this case, the model (2.5) - (2.12) is identical with the one discussed in ([10],
Section 5.4.4), nonlinear kinematic case, if we change the notation according to

- - . |2 .2
(2.18) k=1, ob=X, k)= \/;7,, v(k)R(k) = 30
(i) If we have K =1 in (i), or if we choose (k) = v and R(k) = R/v(I) to be
constant, the Chaboche model reduces to the model of Armstrong and Frederick [1]
(2.19) 0% = y(ReP — o”|¢7)) .

(iii) If dv(k) = g(k)dA(k) for some function g, that is, if the measure v has a density
with respect to the Lebesgue measure A, we obtain a version of the Chaboche model
with a continuous one parameter family of backstresses respectively auxiliary surfaces.

We formulate our main results. For the strain controlled case, we assume Hooke’s
law for the linear.elastic part, that is,

(2.20) Ae =2pe 4+ NTr ()6,
where A,z > 0 denote the Lamé constants.

Theorem 2.3 (Wellposedness, Strain Controlled Case).
Let Assumption 2.1 as well as (2.20) hold. Then the system (2.5)-(2.12) defines an
operator

(2.21) o =G(e;08,00),

(2.22) G Whi(ty,t; T) x TP x T° — Whi(ty,t1;T),
which satisfies the Lipschitz condition
(2.23) 11G(e; 08, 00) — G(&;58,50) 1.
< L(K) (e = &l + 0§ — 381 + |0} — Bl i) »

where the Lipschitz constant is uniform over subsets {(¢,08,05) : |le|l,, < K} of
the domain of definition of G .

We now consider the stress controlled case. If v} =0, that is, if the Melan-Prager
element is absent, our choice (2.12) of initial conditions restricts the initial value
a(to) of the stress; on the other hand, there has to be an initial condition

(2.24) eP(ty) = €
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for the plastic strain. This setting also works for the case vt > 0, the restriction
being

(2.25) a(te) = of + /1 ob(k)dv(k) + 'CleD.

In the case ! = 0, the description of the domains where the Lipschitz constant is
uniform involves the number

(2.26) =

1 4 Tmax

Yewin Iy

Theorem 2.4 (Wellposedness, Stress Controlled Case).
Let Assumption 2.1 hold.

(Case V! > 0.) The system (2.5)-(2.12), (2.24) defines an operator
(227) €= f(O'; Uga 08, Eg) ) F: Da - Wl’l(thtl; T) )

where D, C WY (to,t1;T) x T2 x T° x Ty is the subset of quadruples which satisfy
(2.25). Moreover, F satisfies on D, the Lipschitz condition

(2.28) || F(o; 08, 08,¢b) — (708, 56.20) 1

< L(K) (lo & |y + |08 — 58] + ll05 = Gbllasama + 15— €B1)
where the Lipschitz constant is uniform over subsets {(o,08,06,€5) : | oll,; < K}
of the domain of definition of F .

(Case v = 0.) For every £ > 0, let D,y be the subset of D, where the two
conditions

(2.29) \ [ sbedv(r)| <Ts(1 ),

(2.30) ol £To+7—T18k,

hold, the number B being defined in (2.26). Then F has the properties as stated
above on the domains D, . instead of Dy ; in particular, the Lipschitz constant also
depends on k.

A well known example (see [10], or Example 3.5 in [2]) shows that the bound
| oall,, <To+7 in (2.30) cannot be improved.

The basic idea of the proof of the two theorems above is the same as in [2]. We
replace the two unknown functions e? and of by a single auxiliary function u,
namely

(2.31) u=CeP +of,

where C > 0 is a suitably chosen constant. In fact, both functions & and ol can
be expressed as

(232) =GPk, of=S(usoh).
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Here, the stop operator & represents the solution of the evolution:variational in-
equality

(2.33) lohl <r, (a—04,05—-6)>0 ae V|o|<r,

with the initial condition

(2.34) oq(to) = 0fq,

and the play operator P is defined by

(2.35) Pu;oby) =u—S(u;ohy).

We refer to [2] and [9] for more details. We now derive a differential equation for u
where the internal variables o2, 0',e8,P appear only in terms of ¢% and |€?|. In
the stress controlled case, we set

(2.36) C=T,+/C".

Using the model equations, we obtain

(2.37) o = (T + 1/ CHeP + 65 = (T + VICHEP + 64— 6*
= G+ [ v(K)obdv(B)|].

In the strain controlled case, where we have assumed Hooke’s law (2.20) fér the linear
elastic part, the backstress o® satisfies

(2.38) 04 =2ues, o =2ueq— (2ue® + ).
Here, we set the constant C in (2.31) to

(2.39) C=2u+T;+VC,

and obtain

(240) @ = (2u+Ty+ 4 CYHEP + 65 = 2uéP + 2ués — 6% + (T + V'C)eP
= 2ués+ /I (k) du(k) ||

As it is well known, one can easily eliminate the unknowns o}’ with the variations of
constants formula. Using the basic identity

p
(2.41) er = Zdjer|

T
the differential equation (2.10) for the backstresses becomes
(2.42) 6% = (k) (@ag - o,’;> |€?], kel

For later use, we will write down the solution formula.in terms of the play and stop
operator with the abbreviated notation

(2.43) E=Pu;ob), z=38(u;oL), &z:/[to,ti]— Ty
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The function
t .

(2.44) V(t) = Varg, € (Z /t |€(r)|dr, if&e Wl’l(t07t1;Td))
0

represents the accumulated plastic strain, scaled by a constant factor. If we set

(2.45) \ Wi(t) = exp (1%)‘/(15)) ;

the backstresses can be expressed as

(246)  ob(t) = exp (-%’QV(Q) (og(k) + /tt R oy de(T)) .

r

Thus, for the stress as well as for the strain controlled case, the auxiliary function u
satisfies the equation

(2.47) | i =0+ M(u; 08, 00)I€],
where 0 = o4 respectively 0 = 2ueq,
1
(2.48) Mus o8, a9)(t) = & [ 1(R)oR(e) dw(k),
and (2.43) - (2.46) are used to express o} in terms of the arguments of M . Equation
(2.47) is complemented by the initial condition
(249) ’U,(to) = Cﬁp(tg) + Ugd-

In the stress controlled case, €P(ty) is prescribed, whereas in the strain controlled
case, it can be expressed in terms of the given data by (2.38).

Once the auxiliary equation (2.47) is solved, we can express the operators F,G in
terms of u, namely

(250) e = Flo,of, b e) =+ = A7 + ZP(u; ok,
(2.51) o = Gle,08,0%) = Ale — &) = Ae — %“P(u o).

3. Proof of the Wellposedness

The wellposedness of the initial value problem

(3.1) i(t) = 0(t) + M(u; b, o)) (1)IER)],  £() =P(u;08)(1).

(3.2) u(ty) = u®.

has been studied in [2] concerning the dependence on € ; the dependence on the initial
conditions (u?, 0¥, o) does not pose any new problems. For the convenience of the
reader, we repeat the formulation of the existence theorem, adapted to the present
case.
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Theorem 3.1. Let 6 € W (t,t1;T,), u® € Ty and an operator
(3.3) M C([to, ta]; Tg) x T2 x T° — C([to, t1]; Ta)

be given. Assume that M(-;08,08) is causal and continuous with respect to the
mazimum norm for all o € T? and o € T, and that k > 0,05 € T2, 05 € T° and
u® € Ty are given such that

(34) sup |M(u;08,080)| <1—&

TE[to,t

holds for all t € [to, t1] and all u € Wh(to,t; Ty) with u(ty) =u® and
(3.5) ()] < -};w(f)], ae. in (to,t).

Then there exists a solution (u,£) of the Cauchy problem (3.1), (3.2) where the
functions u,& € Wh{to, t1; Ty) fulfil (3.4) and (3.5). Moreover, every such solution
which satisfies (3.4) also satisfies (3.5).

Proof. See [2], Theorem 3.2. O

Lemma 3.2. The operator M(-;0f,08) as defined in (2.43) - (2.48) is causal and
continuous on C([to,t1); Tg) for all of € T2 and o} € T®. The backstresses o)
satisfy the a priori estimate

(3.6) lob(t)] < R(K), a.e. in (to,t1),
forall kel.

Proof. The estimate (3.6) follows from the variations of constants formula (2.46), since
|z(t)] < r and |o§(k)| < R(k) hold for all ¢ and k. Let now u, € C([to,t1]; Ta)
converge uniformly to u € C([to,t1]; Tq) . It is known (see [9]) that

(37) &n = P(un;06g) = E=P(u;060), Zn=35(un;00) — z=38u;05),

(3.8) Va(t) = Varg, y&. — V(t) = Varp, 4,
uniformly on [to,t;]. An application of Lebesgue’s dominated convergence theorem
yields the assertion. O

We now discuss the boundedness property (3.4). By the definition of M in (2.48),
the estimate (3.6) yields

r
(39) | M3 08, 00) oo <
s0 (3.4) holds for all arguments, regardless of (3.5), with
e 9 i¥e)
(3.10) K= % , respectively k= _Mj‘OV_C ,

in the stress respectively strain controlled case. Thus, the existence of a solution of
(3.1), (3.2) follows for the strain controlled case and, if in addition ! > 0, also for
the stress controlled case. ‘ :
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Existence prodfifor the stress controlled case with v/ = 0. Let x > 0. According
to Theorem:2.4, we want to prove existence for initial conditions satisfying

(3.11) alte)=of + /1 ab(k)dv (k) ,
(3.12) \ / fy(k)dg(k)du(k)‘ <Ty(1— k),
I
and for stress’inputs o4 = 0 € Whl(ty,11;Ty) satisfying
. 1 max
(313) ”Gd“ooSF()-FT—FLBKZ, ,32 +Zy—'—
“min [y
Let such a gy be.given, choose 7 > 0 small enough such that
[+ r
(3.14) / "wd(r)rmg; L Vi€ [t —1].
t max

In the first step-we will prove that, if we have a solution u of (3.1), (3.2) satisfying
(3.4) on [to,a], then it can be extended to [a,a + 7], and every such extension %
satisfies

(3.15) | M@ 05, 08) o < 1- 5
on [a,a+ 17|, and
" 2
(3.16) la(t)l < Z|6a(t)],  ae. on (a,a+1).

To this end, let i € W'%(a,a +n;T;) be an arbitrary function which satisfies (3.16)
as well as @i(a) = @) setting & = u on [ty,a] we may regard it as an element of
Whl(ty,a 4 1;Ty4) as well. From the variation of constants formula (2.46), applied
on the interval [a,a -], we obtain

(3.17) |o}(t) — ofa)]

< (1~ e (-2 - V(@) ) -kl + B, t< et

c\ Y,

for the corresponding backstresses. Since
(3.18) W) - Vi) < [ idr,
we get
brey _ b < Ymax t‘L \ - _<4'Wmaxv 'a+7’,’.‘
(319) lok(t) - ob(@)| < 2RI ["fi(r)|ar < SRR [ oatr)ldr
R
< —
< SR,
SO
(3:20) M@0, AB) () ~ M (@i of, o) (@)] < 5 -

Thus, the assumption |M(i; 05, 08)(a)| < 1—x implies that (3.15) holds if % satisfies
(3.16). We may therefore apply Theorem 3.1 on the interval [a,a + 7] to conclude
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the first step of the proof. In the second step, we use (3.13) to show that (3.15) can
be improved to

(3.21) |M(i; 08,05) )| <1—k, Vte€[a,a+mn)].
In fact, if (3.21) does not hold, then there must exist a t € (a,a +n) such that
d
(3.22) M@ 08, 0)®)] > 1=k, = (IM(@08,0)(®)) > 0.
Let us define
1
(3.23) o= |M(i;0f,00)(t)], e=—M(5 at,o0)(t) € Ta,
then obviously
(3.24) O<l—a<k, |e=1.
The choice of ¢ implies that
325) 0 < 5 = (|M(u 00,00)(t / (k)G (L), €) du (k)
= 2 [0 ) - o), ) vl

so in particular |¢ (t)| > 0 and therefore
(326 [0 dvlR) < 2a(o),e)
= 22 ((oatre) - [ioho, e dvv))

hence
T
(327) [ (307 +2) (o), ) o) < 2ol
On the other hand, the a priori estimate |o2(t)| < R(k) shows that
(3.28) 0<loa=— [A®)R®Ye =~ o(0), ) (k) < s,
Fl I

hence the definition of 8 in (3.13) yields
(3.20) /I <1+—r%'y(k)2> (R(k)e — o%(t), &) du(k)
< B [ 1) (R(k)e — ob(®), ) dv(k) < BTix,

and therefore
(330) Noaloo> [ (1+F9(0)) RE) dv(h)

-/ (1 + £1(8) ) (R(K)e — o%(t), €) dv(k) > To +r — 1k,
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which contradicts our assumption (3.13). Thus, such a ¢ cannot exist, and the second
step is proved. Applying the two steps in an alternate fashion we are able to cover
the whole interval [to, %], thus completing the existence proof. O

Proof of uniqueness and Lipschitz continuous dependence. We combine a Gronwall
type argument with the Lipschitz continuity property of the hysteresis operators P
and S. As the arguments are essentially the same as for the single surface case, i.e.
the model of Armstrong and Frederick, we can use the results of [2] to a large extent.

Prop051t10n 3.3. Let two sets of data (61,43, 0%,0%), (62,1, 0%, 05) with ;€ ©,
w0 € X, ofy € T? and o € T® be given, let (uy,&1) and (ug,&2) be correspondzng
solutions in W™ l(to,tl,'ﬂ‘d) of the Cauchy problem (3.1), (3.2) which satisfy (3.4)
and (3.5). Assume that

(3:31)  max MG o, o2o)(s) = M(uai o, o) 5)
< 4(1o% — bl + ok — ollscrma + 12— u8) + [ 12 — o] ds)
holds for all ¢ € [to,t1] . Then there holds
(3:32) flus—uallhs
< L ([uf — uf] + lo%o — okl + llote — ool zariray + 1161 — 62 1)
where L depends only upon A,k,r and
(3-33) c=max{[[ 611, 162111}

Proof. See Theorem 3.3 in (2]. O
The operator M as defined by (2.43) - (2.48) satisfies

(338) IM(us; oo, o%o)(1) — Mlui; oy 7))
< [A®lotalh) —oa(®l v + (P2 + 25 [ Heatollas) [ 1~ alds,

as a repeated use of the triangle inequality as well as of the inequality | exp(—t) —
exp(—s)| < |t — s, valid for ¢,s > 0, shows. It was proved in [2], Theorem A.5, that

(335) [ 1€~ 6ol ds < I0%oq = ofual + [ lis — ol ds+ 3= [ finlfo = 2] s
0 0 0

holds. Moreover, by the standard uniqueness argument for variational inequalities
(see also Proposition A.1 in [2]), one has

t
(3.36) [22(2) = 228 < [oFa — foal + | i — il ds.

Putting together the estimates (3.34) - (3.36), one sees that M satisfies the assump-
tion (3.31) with some constant A which depends only on [|uy |, 4, |42, and on
the problem data. Therefore the Lipschitz estimate (3.32) holds for the difference
u; ~ug of the two solutions. It extends to all the unknown functions in the Chaboche
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model, since they can be expressed in terms of u and & as shown at the end of Sec-
tion 2, both for the stress controlled and the strain controlled case. Thus, the proof

of

Theorems 2.3 and 2.4 is complete.
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ABSTRACT. We consider a Mayer optimal control problem for a system governed by a
semilinear evolution equation of parabolic type.

We are interested in the smoothness of the related value function V' along an optimal
trajectory z*(-). We obtain an estimate on the superdifferential of V' at (¢,2*(t)) which

states that
dimDTV (¢, z*(t)) < 1.

This result may also be regarded as a necessary condition for optimality.
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1. Introduction
In this paper we are concerned with the following optimal control problem:
(1.1) minimize g(z(T))
over all trajectory—control pairs {z,v}, subject to the semilinear state equation

{ o'(t) + Az(t) + f(t,2(t),v(t) =0, t€ [to, T

(1.2) 2(tg) = o

Here, z, belongs to a real Hilbert space X, to € [0,7] and —A is the infinitesimal
generator of an analytic semigroup. For simplicity, we assume that A is self-adjoint.
A control v*(-) is said to be optimal, if the minimum in (1.1) is attained at *; the
corresponding trajectory z*(-) is said to be an optimal trajectory.
The value function V of problem (1.1)—(1.2) is defined as

(1.3) V (to, zg) = inf{g(x(T))|{z, v}subject to (1.2)}

and satisfies the Dynamic Programming (or Hamilton—-Jacobi-Bellman) equation
-8,V (t,z) + (D, V(t,z), Az) + H(t,z, D,V (¢,x)) =0

(1.4)
Vte (0,T), Vz € X

see {7]. In the above equation, H : [0,T] x X x X — R is the Hamiltonian defined as

(1.5) H(t,z,p) = sup —{p, f(t,2,7)).

Preceding Page Blank
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It is well known that V is not differentiable in general. We are interested in
studying if it gains regularity along an optimal trajectory. The condition we derive
in the sequel can therefore be seen as a necessary condition for optimality.

There are several reasons suggesting that the behaviour of V' should be better
along optimal trajectories. In finite dimensions this improvement in regularity is
known for problems with a “strictly convex structure”, such as Calculus of Variations
(see [8]), some Minimum Time problems (see [4]), and problems with infinite horizon
(see [10]). Indeed, in such examples, the value function V is differentiable along an
optimal trajectory.

For Mayer problems, however, the Hamiltonian H is homogenuos of degree one
in p, and so it is not strictly convex. Nevertheless, by a careful application of the
Dynamic Programming equation (1.4), we deduce that the value function V' cannot be
too singular along an optimal trajectory z*(¢),t € (to,T'), of a sufficiently “smooth”
problem. In fact, we prove the estimate

(1.6) dmD V(75 8) <1, Vit € (to,T),

which bounds the dimension of the superdifferential of V' along z*(¢). This result is
new also for finite dimensional problems.

Finally, we would like to observe that (1.6) does not hold for an arbitrary Mayer
problem, but requires a smoothness assumption on the set f(t,z*(t), U) of admissible
velocities. Indeed, if H vanishes, then equation (1.4) becomes too weak a condition
on V to prevent the generation of higher singularities. We discuss this phenomenon
in Example 3.5.

2. Preliminaries

Let X be a real Hilbert space and U a complete separable metric space. Fix T > 0
and let {tg, zo) € [0,7] x X. Consider the problem of minimizing the functional

2.1) I (to, zo; 7) = g(x(T’ 0, %0, 7))
over all measurable functions v : [0,00) — U (usually called controls). Here g :

X — R is a given continuous function and z(-; %o, Zo,y) is the mild solution of the
semilinear state equation

{ '(t) + Az(t) + f(t,2(2),7(1)) =0, t€ [to,T)]

(22) z(to) = o,

that is the solution of the integral equation
]

(2.3) z(t) = e~ 04z, —/ e~ =4 £ (5 1(s),v(s))ds
to

for all ¢ € [to, T}
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In the above Mayer optimal control problem we impose the following assumptions
on the data:

(¢) A:D(A) C X — X is self-adjoint and generates
an analytic semigroup, e4,t > 0;

(i) f:]0,T] x X x U — X is continuous and such that

|f(t,z,7) = f(s,9,7)| < Collt — 5| + ]z —y]]
for some Cp > 0 and all t,s € [0,T),z,y € X,y € U;

(ii1) g is Lipschitz on all bounded subsets of X.

\

It is well known that, under the above assumptions, problem (2.3) has a unique mild
solution z(-) € C([to, T]; X).
Let € be an open subset of X and ¢ : 2 — R.

Definition 2.1. For any fized zo € Q, the semi-differentials of ¢ at zo are defined as

D* (o) = {p € X|limsup plz) - (P(|z°) ; (|p, z — o) < 0}
T—T0 — Xy

D™¢(zo) = {p € X|liminf ¢(z) = ¢(z0) — {p, % = 20) > 0}
g |z — o]

and called super and subdifferential of ¢ at Ty, respectively (see [5]).

The semi-differentials D p(zo) and D~¢(zo) are both non-empty if and only if ¢
is Fréchet differentiable at zg. In this case we have

D*p(zo) = D™ p(m0) = {Vip(zo)}
where V¢ denotes the gradient of .

Definition 2.2. We denote by D*yp(zo) the set of all points p € X for which there
exists a sequence {Tytnen in X with the following properties

(2.5) (it) @ is Fréchet differentiable ot x,,Yn € N

(¢) =z, converges to zo as n — 00
(1i1) V(z,) weakly converges to p as n — 00

If ¢ is Lipschitz in a neighborhood of o, then ¢ is Fréchet diffentiable on a dense
subset of Q. Consequently, D*p(zq) # ¢.
Let now § be convex and set B,(zo) = {z € X | |z — 20| < r}.

Definition 2.3. We say that @ is semi~concave if there exists a function
w : [0, +00) X [0, +00) — [0, +00)

satisfying
(1) w(r,s) <w(R,S), VO<r<R, V0<s<S8
(i7) liH)l w(r,s)=0, VYr>0
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and such that
(26) Xo(e) + (1= Ne(y) — ez + (1= Ny) <A1 =Nz —ylw(r [z - y))
for every r > 0, € [0,1] and z,y € QN B.(0).
The superdifferential of a semi—concave function has several useful properties, some
of which are recalled in the following
Proposition 2.4. If ¢ is semi—concave in B,(xo) for some r > 0, then
(2.7) D* (o) = 20D p(z0)
where €0 denotes the closed convex hull. In particular Dt ¢(zo) # ¢.

Remark 2.5. For a semi—concave function the semidifferential of interest is the su-
perdifferential, since either the subdifferential is empty or it coincides with the su-
perdifferential and the function is differentiable.

We define the value function of problem (2.1)-(2.2) as
(2.8) V (to, 7o) = inf{g(z(T; %0, z0,7))| v : [to, T] — U is measurable }.

The result below will be applied in the next section. We denote by D7V (¢,z) the
superdifferential of V(t,-) at z. The proof of the Proposition below is given in [3].
Proposition 2.6. Assume (2.4) and let (ty,zo) € [0,T) x X. Then, for all « € [0,1),

D}V (te, o) C D(A%) & D;V(to,xz0) C D(A%).
Under additional assumptions on the data, the value function V' is semi—concave

in (t,z) on [0,T) x X. More precisely, the following result is obtained in [3].

Theorem 2.7. Assume (2.4), and suppose that there ezists a € (0,1] such that, for
all R > 0 and for some constant Cg > 0,

(@)  f(,-,7) is differentiable and
29) 35 (6,2,7) — 55 (5,9,7)|| < Cr(lz —yl + |t — s])°
for all s,t € [0,T),z,y € Br(0),y € U,
(@) g(z)+ gly) — 29(%*) < Crlz — y|"*®, Vz,y € Bg(0).
Then for any r > 0 there ezists C, > 0 such that

(2.10) V(tl,x1)+V(t0,x0)—2v(t1—J2“tﬂ, %@

for all t1,t, € [0,T — %] and all 1,7y € B-(0).

We conclude this section with few remarks about the Dynamic Programming equa-
tion (1.4) of a Mayer optimal control problem. As we recalled above, (1.4) is satisfied
in a suitable generalized sense, as V is in general not differentiable and the coefficient
of the linear term (D,V (¢, ), Az) is defined only for z € D(A). However, we know
from Proposition 2.6 that D7V (t,z) C D(A?) for all € [0,1). Moreover, every
trajectory of (2.2) enters the fractional domain D(A'~?) as soon as t > to. Therefore,
all the terms in the following equality are well defined.

)SqOT(ltl—tolJrlml—xol)”"
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Theorem 2.8. Assume (2.4), (2.9). Let z*(-) be an optimal trajectory of problem
(2.2)+(2.1) and 6 € (0,1). Then,

(211) — Dt + <A0pza Al_gx*(t)> + H(ta z*(t)7pz) =0
for all t € (to,T) and all (p;, p) € DTV (L, 2*(t)).

The above result is all we need to know about equation (1.4) in the sequel. For its
proof, see (3], Theorem 5.2.

3. An Optimality Condition

We now show that the results of the previous section, toghether with some hy-
potheses on the control set and on the dynamics f in the state equation (2.2), can
be used to study the structure of the singular set of the value function V associated
with a Mayer optimal control problem.

In addition to the Dynamic Programming equality (2.11), the proof of our main
result is based on some notions of convex analysis. These results are adapted from
[4], where they were obtained in a finite dimensional set—up.

We recall that the support function to a convex set K C X is given by

ok(p) = gg}g(k,p)

If & € K, the normal cone to K at k is the set
Nx(k)={pe X :{p,k—k) >0Vk e K}.

Moreover, given a convex set K, we consider the smallest affine set that contains K.
This set is called the affine hull of K and is denoted by aff(K’). The relative interior
of a convex set K is defined as the interior which results when K is regarded as a
subset of its affine hull aff(K).

Lemma 3.1. Let K1, Ky C X be bounded closed convex sets and suppose that Ky is
not a singleton. Then the following two properties are equivalent:

(i) there exists k € Ky such that K; C Nk, (k) ;

&1 (i) 01,00 + (1= Npr) = Aoz (po) + (1= Nrss ()
Vpo, p1 € Ka, YA € [0,1].

Proof. From the definition of normal cone

pE NKI(E) g O-Kl(p) = (p7E>

This yields that (i) implies (ii).

Conversely, let us suppose that (ii) holds. Let P be a point in the relative interior of
K,. Since K; is a weakly compact set and the map k — (k,7) is weakly continuous,
there exists k € K; such that o, (p) = (5, k).

By definition,

(3:2) ok, (p) > (p,k), Vp € Ka.
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Let us suppose that there exists py € Kj such that o, (po) > (po, k). Since P is
in the relative interior of Ky, there exist py € Kz, p1 # P, and X € (0,1) such that
D= 2po+ (1 — A)p1. Then

o, (p1) = (1= N7 0w, (B) = Aok (p0)) < (1= N) 7B = Apo, k) = (p1, B),

in contraddiction with (3.2). Tt follows that (3.2) holds as an equality for every
p € K,. Therefore Ky C N, (k). ]

We denote the segment from a point = to a point y as
[z,9) = Dz + (1— Nyl A € [0, 1]}

Theorem 3.2. Assume (2.4), (2.9) and let 2*(:) be an optimal trajectory of problem
(2.2)~(2.1) such that

(3.3) f(t,z*(t),U) is a closed convex set with boundary of class C"
for any t € (to,T). Then,
(3.4) dimDTV (t,z*(t)) <1, Vte (t,T).

Moreover, for any t € (ty,T) there ezists p(t) € R x X and p(t) € [0,1] such that
DTV (t,2*(t)) = [u(®)p(t), p(t)]-

Proof. Fixt € (to,T). Then either dimD*V (t,z*(t)) = 0 or dimD*V(t,z*(t)) > 0.
Clearly if the first case holds there is nothing to prove. Let us consider the second
case. Assume that dimD*+V (t,z*(t)) > 1 and take two elements (p;, p.) and (p;, p,)
in D+V (¢, z*(t)). Consider p} = A\p,+(1—A)p,, A € [0,1]. Then, since DV (t, z*(t))
is a convex set, (ps,p}) € DYV (¢, 2*(¢)). Recalling that

H(t,2*(t), Ps) = 05t (t),0) (Pz)s
we evaluate equation (2.11) at (p;, p)) to obtain

Tra @) (s + (1 — A)py) =

pe— {A?Ope + (1= Np,), A0 (1)) = Ao 00,09 (P2) + (1= N sy (02).

Therefore, on the sections of DYV (¢,z*(t)) at the level p, 0@ (r),v)(-) is a linear
function. By Lemma 3.1 and assumption (3.3), we derive that p; = pp, for some
p > 0. We now evaluate equation (2.11) at (p,p;) and (p:,p,,) to obtain

Oty (Pe) + (AP, A1) = my
and  poseer)(0e) + 0 (A'ps, AT0T(E) = i
Hence,
Ot 0) () + (A%Pa, 1702 (2)) = plO st .0) (Ps) + (APpy, A0z (1))),

which yields p = 1. Therefore, for any p; there exists at most one p, such that
(P, pz) € DYV (2, 2*(8)).
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Let p°(¢),p*(t) € DTV (¢,z*(t)) be such that

p; = min{p|3p, : (b, p) € DTV (t,2%(1))}
and p} = max{p|Ip,: (pz,p) € DYV(t,2*(1))}-

By the convexity of the set D'V (¢,2*(t)), we derive that there are no points p,
such that (p;,p,) € DYV (t,z*(t)) with p; < p? or p; > p;. On the other hand, for
any p; such that p? < p; < p}, there exists at least a p, so that (p;,p;) belongs to
D¥V (¢, z*(t)). Moreover p, is unique since we proved before that on any section of
DV (t,z*(t)) at the level p; there is only one p,, hence dimD*V (¢,z*(t)) < 1. This
yields D¥V (¢, z*(t)) = [p°(t), p' (t)]-

We now prove the last statement of the theorem. Plugging p° = p°(t),p! = p'(¢)
and p* = A\p° + (1 — A)p!, X € [0,1] in equation (2.11) we obtain

_p? + <A9p2’ Al—ex*(t)> + Uf(i,z*(t),U)(pg) = 0’
_ptl + <A0p(1’:, A0 (t)> + o'f(t,w*(t),U)(p;) =0,

__pi‘ -+ <A6pa)v\? A1~0m*(t)> + Uf(t,z*(t),U)(pi‘) = 0.
From the above equations we derive

a0y (P3) = Ao, 00 (P2) + (1 — Nosie@),0) (Ph)-

Therefore, 0 .+),0)(-) is linear when it is restricted to the ortogonal projection of
DV (t,z*(t)) on X, denoted by ILx(D*V (¢, 2*(¢))). Hence

x(D*V(t,2*(1))) = [u(t)pz, 3,

for some u(t) € [0,1], which yields p? = u(t)pl. Again from equation (2.11) we get
p? = u(t)p} and the proof is concluded. [ |

Remark 3.3. The above Theorem holds for any real Hilbert space X such that
dim X > 1. However, if dim X = 1, then assumption (3.3) is meaningless. In
this case we only require that f(t,z*(t),U) # {0} for all ¢ € (¢, T), in order to
assure that o q+),v) 7 0.

Remark 3.4. The last statement of the above Theorem shows that DTV (¢, z*(¢))
must be a radial segment, contained in a half-line starting from the origin. This fact
is a very strict requirement and suggests that, even for Mayer problem, the value
function might be differentiable along optimal trajectories provided that f(¢,z,U) is
sufficiently smooth. This question is, however, still an open problem.

The above argument heavily relies on assumption (3.3), that allows to use the
Hamilton—Jacobi-Bellman equation (2.11) to study D*V. However, such a condition
is also necessary for an estimate like (2.11) to hold true, as we now show with the
following example.

Example 3.5. We consider the state equation in X = R?

{ T'(s) =n(s)x(s), set,T], T T
7(s) =n(s)7(s), s€t,T], 7t)=y.
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with U = [0,1] x [0, 1]. Notice that assumption (3.3) is not satisfied on zy = 0. The
value function V' is defined as

V(t,z,y) = nf{Z(T) + 5(T)| (v1,72) : [t,T] — U measurable}.

Then is not difficult to see that

z+y z,y >0
eltz+y x<0,y>0
z+elty >0 y<0
eftz+y) z,y<0

Vit,z,y) =

We note that the (unique) optimal trajectory at (0,0) is given by Z(t) = 0, F(t) =

0,

t € [0,T]. Moreover, by Proposition 2.4, we have
DYV(¢,0,0) = co {(1,1,0), (7%, 1,0),(1,e77%,0), (7,77, 0)},

and so dim DTV (¢,0,0) = 2 for all ¢ € [0,T)).
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ABSTRACT. We consider optimal control problems governed by semilinear elliptic equations
with pointwise state constraints. The set of control constraints is a subset of a LP-Lebesgue
space with 1 < p < 00, it is described by pointwise and integral constraints. We prove a
Pontryagin prineiple in integral form.
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1. Introduction

During the ten last years, many papers have been devoted to Pontryagin principles
for control problems governed by partial differential equations (see [18], [6]). In the
presence of state constraints, Pontryagin’s principles are often proved thanks to the
Ekeland’s variational principle (applied to problems in which state constraints are
penalized), coupled with methods of spike perturbations. To apply the Ekeland’s
variational principle, the space of controls V,; endowed with the so-called Ekeland
distance, must be complete. This assumption of completeness is in general not satis-
fied if V4 is a subset of a LP-Lebesgue space with 1 < p < oo (see [14]). This is the
reason why most applications of that method deal with bounded controls.
Extensions to problems with unbounded controls are considered in [14], [12], [19]. The
idea is to use perturbations whose difference with an optimal solution is bounded in
a LP-space with 1 < p < co. Extensions of [14], [12] are given in [11]. The method
in [19] has been improved in [20] by considering perturbations whose difference with
an optimal solution is bounded in L.

In this paper we want to show that the method developed by Li-Yong [17], [18] and
by Casas [6] (first introduced by Li-Yao [16]), and extended to unbounded controls in
[19], [20], can also be extended to problems with integral control constraints (see the
beginning of Section 3.2). Let us explain what is new. In [11], [12], [20], the sets of
admissible controls are patch complete in the sense introduced by H. O. Fattorini [12]
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(that is, a perturbation of an admissible control, over a subset of small measure, by
an other admissible control, is still admissible). Notice that constraints of the form
|v]lz» < C do not correspond to a patch complete subset of LP if 1 < p < oco. Here
the novelty is that we still obtain a Pontryagin’s principle, even in cases when the
set of admissible controls is not patch complete. When the set of admissible controls
is not patch complete, we cannot use, as in [20], perturbations whose difference with
an optimal solution is bounded. This is the reason of another difficulty because
there is a gap between convergence properties implied by the Ekelend variational
principle (Lemma 3.1) and convergence properties necessary to prove some continuity
properties of the cost functional (see [6], Theorem 5.1 and [20], Lemma 3.1). Contrary
to [6], [20], here we only prove a lower semicontinuity property (Proposition 3.1, ii)
under some convexity condition of the cost functional with respect to the control
variable (observe that this convexity condition is not needed in [6], [20]).

For simplicity, we present this extension for problems governed by semilinear elliptic
equations, but the same kind of results can be obtained for problems governed by
semilinear parabolic equations as those considered in [6], [13], [19], [20].

2. Setting of the Problem

Let © be an open bounded subset of R¥ (N > 2) with a Lipschitz boundary T, g,
7 and 7 denote positive numbers satisfying

N
q>§7 r>7F>N-—-1

We consider a second order differential operator defined by:

N
Ay = — ) Dilai(z)Dsy),

i,j=1
(D; denotes the partial derivative with respect to z;) with coefficients a;; belonging
to L>(2) and satisfying for some mg > 0

N
3 ai()&i; > mol€)? forall € € RY and a.e. z € Q.

ij=1
We consider the following boundary value problem:
0
(2.1) Ay +@(z,y) =01in Q, 8—ny-+\1/(s,y,v) —0onT.
A

The function @ (resp. ¥) is a Carathéodory function from € x R (resp. from I' X R?)
into R. For almost every = € Q, (resp. almost every s € I and every v € R), ®(z, )
(resp. ¥(s,-,v)) is of class C* and we have the following estimates

|(2,0)] < My(z), 0< a9 <P (z,y) < Mi(z)n(ly]),

|¥(s,0,v)| < Ma(s) +mulv], 0<by < TL(s,y,v) < (Ma(s) +malv)n(lyl),

where M; € L9(Q), My € L"(T"), my is a positive constant, and 7 is a nondecreasing
function from R* into R* (we have denoted by @; the partial derivative of ® with
respect to y, we adopt in all the sequel the same kind of notation for other functions).
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In addition, we assume that the pair (ay, by) satisfies the ellipticity condition (E,,)
stated below.

We say that a pair of nonnegative functions (a,b) € L(Q) x L"(I') satisfies the
ellipticity condition (E,,) if:

1
(Em) inf{i[/ (a;;D;yDiy + ay®) dx +/ byds] |y € HY(Q)} > m > 0.
Nyl @) Yo r

Remark 2.1. Since a and b are nonnegative functions, if 2 is connected, the ellipticity
condition (E,,) is satisfied for some m > 0 if and only if (a, b) is not identically zero.

Remark 2.2. For every v € L'(I'), equation (2.1) admits a unique weak solution in
HY(Q)NC(Q) (see Section 2).

We consider the following optimal control problem:

(P)  inf{J(y,v) | (y,v) € (HH(Q)NC(Q)) x V, (y,v) satisfies (2.1)-(2.2)},

where

T) = [ Fley@)dz + [ Glsy(s),ols)ds,
(2.2) f(z,y(x)) <0  for every z € {,

V={ve L’ (D) | v(s) € K(s), [ gls,v(s))ds =0, [ h(s,u(s))ds <0},
where K is a measurable multimapping from I" with closed and nonempty values into

P(R).

We suppose in the sequel that F' (resp. G) is a Carathéodory function from Q x R
(resp. from T' x R?) into R. For almost every z € (2, (resp. almost every s € I' and
every v € R), F(z,-) (resp. G(s,-,v)) is of class C! and we have

|F(z,0)] < Ms(z), |Fy(z,v)l < Ms(z)n(lyl),

0 < G(5,0,v) < My(s) +malol,  |Gy(s,y,v)| < (Ma(s) + ma o[ )n(ly),

where M3 € L'(Q), My € LY(T'), m; and 7 are the same as before. For almost
every s € I' and every y € R, G(s,y,-) is convex on R. The functions g and h are
Carathéodory functions from I' x R into R satisfying

lg(s,v)] < My(s) +malo|”, —My(s) — malv|” < (s, v) < My(s) +malv],

my and M, are the same as before. We also suppose that the function f : OxR —R
is continuous and that for every z € Q, f(z,-) is of class C.

The main result is the following Pontryagin principle.

Theorem 2.1. If (§,7) is a solution of (P), there then ezist (7, i) € R* x M(Q) and
P belonging to WLT(Q) for all 1 <7 < N/(N —1) such that

(2:3) @R #0, E20, (BT NIm@xce =0,
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A+ @ (x,9)p = PF,(z,9) + Baf,(z,9) in §,
(2.4)

o2+ ! (5,5,0)p = 9Gy(s,5,0) + fir fy(s,5) inT,

Bn 4*

08) [ Ho0(6),005),5(6), s < [ H(s, (), 0(5),5(s),P)ds

for every v € V, where H(s,y,v,p,v) = vG(s,y,v) + p¥(s,y,v), A'p =

- Zﬁ’jzl Dj(as;(z)Dip), fiq is the restriction of i to Q and fir is the restriction of [i
toT.

3. Technical results
3.1. State equation. Adjoint equation.

Theorem 3.1. For every v € L7(I"), there exists a unique weak solution y, € H' ()N

L>(Q) of (2.1). This solution belongs to C(S) and we have
lysll ey + lwolle@ < Ca(l + vllLrry).

where Cy depends on 7 but does not depend on v. Moreover, the mapping v — Y, 18

continuous from L7(T") into C(Q).
Proof. See [1].

Let (a,b) € LI() x L"(T') be a pair of nonnegative functions satisfying (E,). We
consider the following boundary value problem

Ap

bp=prinl
aTLA*+p grinl,

(3.1) A*p+ap = ug in Q,

where g = pgq + pr is a Radon measure on . We shall say that p € WH(Q) is
solution of (3.1) if (ap, bp) € L* () x L}(I"), and if :

/Q(Z a;;D;ipD;p + apyp) dz + /FbSOP ds = {1, ©) m@)xc(@)
i :
for every ¢ € W1°°(Q). Following [1], we have
Theorem 3.2. For every pair of nonnegative functions (a,b) € L(Q) x L"(T') satis-

fying (En) and every p € M(Q) there ezists a unique solution p € WH1(Q) of (3.1)
satisfying

Oy
/Q p(Ay + ay) dz + /F p.(a—nA + by) ds = (1, Y) m@)xc(@)

for every y € {y € H'(Q) | Ay € LU(Q), -(%’; € L"(T')}. Moreover, this solution

belongs to WY (Q) for every 1 <1 < NJ/(N —1), and there exists a positive constant
Cs = Cs(7), not depending on a, b and u, such that

Ipllwir@) < Csllll sy
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Proof. The proof is given in [1], Theorem 4.2. It is well known that (3.1) can admit
more than one solution [21]. However, there is a unique one satisfying the Green
formula stated in Theorem 3.2. 0O

We also need in Section 3.3 the following regularity results.

Theorem 3.3. For every pair of nonnegative functions (a,b) € L1(Q) x L"(T') sat-
isfying (En,) and every ¢ € LU(RY), ¢ € L"(T"), there exists a unique weak solution
y € HY(Q) of the equation:
Ay+ay=¢ inQ, iay——!—by:@b on T,
8nA
this solution belongs to C*(Q) for some 0 < o < 1 and we have the following estimates
Iyllo@ < Colll¢llze@ + 14ll- @),

[yllca@) < Crlllgllzae) + 1 ll-m) (T + lallzs) + 18]l ry),
where Cg and Cy are independent of ¢, ¥, a and b.

Proof. The first part is proved in [1]. Thanks to the first estimate, the second one
can be proved with regularity results in [15].

3.2. Metric space of controls. In methods developed in [4], [6], [18] to prove a Pon-
tryagin principle the set of admissible controls V,4 is endowed with the so-called
Ekeland distance dg. To apply the Ekeland variational principle, the space (V,4, dg)
must be complete and the mapping v — ¥y, must be continuous from this metric
space to C(Q). Approximate optimal solutions are then characterized by an ap-
proximate Pontryagin’s principle thanks to some method of perturbation. When the
control set is defined by

Voa={v e L®T) |v(s) € K forae sel'}

(where K is a compact subset in R), the above conditions are satisfied and the
method of spike perturbations can be used to recover a Pontryagin’s principle [4].
In our case, (V,dg) is not complete, the mapping v +—— y, is not continuous from
(V,dg) into C(Q), and the method of spike perturbations cannot be used because a
spike perturbation of an admissible control is not necessarily admissible.

An other kind of perturbation, first introduced by Li-Yao [16], has been developed
by Li-Yong [17], [18], and by Casas [6]. This kind of perturbation, called diffuse
perturbation, has been adapted in [20] to treat problems with unbounded controls.
The idea is to use diffuse perturbations whose difference with an optimal solution is
bounded in L®(T"). Here, by using (as in [19]) diffuse perturbations whose difference
with an optimal solution is bounded in L™(I"), we can consider problems with integral
control constraints.

We define a new metric space in the following way. Let ¥ be in V' (¥ will be an
optimal boundary control that we want to characterize). For 0 < M < oo, let us set:
VIM)={veV|lv-0|rq <M},

and define:
dg(v1,v2) = LV ({s € T'| wi(s) # va(s)}).
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Lemma 3.1. Let M > 0 and {(vp)n,v} C V(M). If (vu)n tends to v in (V(M),dg),
then (v, ), tends to v in L7(I).

Proof. The proof is immediate if we remark that, since 1 <7 < r, we have
[l = wal" ds < o = vnllfrqey (e (oa, ) < QM) (dp(em, o) T O

Proposition 3.1. For every M > 0, we have :

i) (V(M),dg) is a complete metric space,

i) the mapping which associates y, with v is continuous from (V(M),dg) into
(@),

i) the mapping which associates J(y,,v) with v is lower semicontinuous from
(V(M),dg) into R.

Proof.

i) Let (v,), be a Cauchy sequence in (V(M),dg). Following [9], we can prove
that (v,), converges for the distance dr to some measurable function v such that
v(s) € K(s) for a.e. s € T. As in the proof of Lemma 3.1, we can prove that (v,)y, is
a Cauchy sequence in L7(I"). Moreover, (v,), is bounded in L™(T"). Therefore (v,)n
converges to v strongly in L7([") and weakly in L"(I"). On the other hand, by using
Fatou’s Lemma (applied to the sequence of functions A(:, v, (-)) + My (-) +malva(-)["),
it, yields :

/Fh(s,v) ds < hﬁ,g}f/r h(s,v,)ds <0,

and we also have
[v = 0l|zr(ry < liminf [jvn, — 0 zrqy < M.
Moreover, we have lim, [rg(s,v,)ds = 0 and (because (v,), converges to v in
L7(T")) there exists a subsequence, still indexed by n, such that lim, [r g(s,v,)ds =
Jrg(s,v) ds. Therefore, [ g(s,v)ds =0 and v belongs to V(M).
ii) This assertion follows from Lemma 3.1 and from the continuity result of Theorem
3.1.

iii) We consider {(vn)n,v} C V(M), such that (v,), converges to v for the metrics
dg. Recall (see (i)) that (v,), also converges to v for thé weak topology of L"(I"). We
complete the proof thanks to the assumptions on F, G and thanks to the continuity
results stated in (ii). (In particular, we use the convexity of G(s,y,-) and estimates
on G to prove the lower semicontinuity of v — J(y,,v).) |

3.3. Diffuse perturbations.

Lemma 3.2. Let vy, vy and vs be in V and let y; be in C(Q). For every 0 < p < 1,
there ezists a sequence of measurable subsets (E7 ), in I' such that

(32) CVNED) = LN (T),

(3.3) /F\Eg h(s,v;)ds + /E;; h(s,v9)ds = (1 — p) /1‘ h(s,v1)ds + p/rh(s,w) ds,

(3.4) /r\Eg g(s,v1)ds + /E? g(s,v2)ds = (1 — p)/Fg(s,vl) ds+ p/rg(s,vg) ds,
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(3.5) / Wrww@+/|w—MWs
T\Ep Ep

=(1=p) [ los— vl ds+p [ Jor—val"ds,

(36) [ (Gls,u5,0) = Glo,yn,on)) ds = p [ (Gls,n,00) = Glo,,m)) ds,

P

1
(3.7) -p—ng — 1 weakly-star in L*(T') when n tends to infinity,

where Xpp 4s the characteristic function of E.

Proof. This lemma is an easy consequence of the Lyapunov convexity Theorem (see
[20]).

Theorem 3.4. Let vy, vy and vs be in V. For every 0 < p < 1, there exists a measur-
able subset E, C T' such that

(3.8) LY E) = pLV NI,
(3.9 /I‘\E,, h(s,v1)ds+ /E h(s,ve)ds = (1— p)/rh(s,vl)ds + p/rh(s,'vg)ds,
(3.10) /F\E g(s,vl)ds—i-/Ep g(s,v9)ds=(1 —p)/Fg(s,vl)ds—l—p/rg(s,vz)ds,

@n)/’;m—mr@+/|w—mr@
I\E, E,

—(1=0) [ Jov = vl ds+p [ oo —wal"ds,

(312) [ (Gls,y1,v2) = Gls,us, ) ds = p [ (Gls,wn,v2) = s, a,w)) ds,

P

o1
(3.13) Yp =41 +pz+Tp })13(1) ;”Tp“C(Q) =0,
(3.14) I(Yp,vp) = J(31,v1) + pAJ + 0(p),
where

; I'\E
uy(s) = v1(8) z.fs e\ E,,
va(s) if s € E,,
Yy, and y1 are the weak solutions of (2.1) corresponding respectively to v, and to v1,
z is the weak solution in H*(Q) of

0z
Az+0(z,y1)2 =0 inf, n A—I—\I" (s,y1,v1)2+¥ (s, y1,v2)—V(s,41,v1) =0 inT

and
AJ = / (8,y1,v1)2 + G(s,y1,v2) — G(s,y1,v1)) ds.
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Proof. Let (E}), be the sequence of measurable subsets defined in Lemma 4.1. We

set

ny_ Jui(s) ifseT\E

pls) = va(s) ifs€ E}.
Let yj, be the solution of (2.1) corresponding to vj and let z be the function defined
in the statement of Theorem 3.4. It is clear that ¢ = (yy — 31)/p — 2 is the weak
solution in H*(2) of

v

9
Ona

where a? = [y @, (z,v1 + tyF — yo))dt, B} = Jo Vy(s, 9 + t(yp — w1, v})dt, ¢ =
(@ (=, yl) ay)z, 7/’" = (U, (s,y1,v1) =)z, ¢y = (1—“XE")(\I’(S 91,1)2) ‘If(s ylavl))
and xgp is the characteristic function of Ey. We denote by C’“ the solution in H(Q)

A+ a3 = ¢, in (), + (=9, +¢;onl,

of
AC+ a3 = ¢ in O, %—l—b;‘C:zp;‘onF,
by (72 the solution in H'(Q) of
A(+a;¢ =01in , ﬁ-l—b"(zgp”onn
ng P p
and by &7 the solution in H(Q) of
At +a =01in Q, 86 +b=¢>onlT,
Ona s
where a = @, (z,y1), b = ®;(s,1,v1). We also have
3(5,, C"z)

A -GN +ap (6 -6 =(ap—a)é in Q, +bp (65 —(0") = (bp—b)¢; onT"

Notice that (a,b) and (af,b7) satisfy the ellipt1c1ty condition (E,,). Thanks to The-
orem 3.3, we have

(3.15) 1 @ < Colllgh Nl oy + 195 |rry),
(3.16) 1672 — Elle@y < Cs(llay — allza@y + 18 = bllzre)IIE7 lesy-
The operator T which associates £, the solution in H*(£2) of
o¢
A = e —— —
E+ag=0, S +bE=p,

with ¢, is continuous from L"(T") into C*(£2) (see Theorem 3.3). Since the embedding
from C*(Q) into C(Q) is compact, the operator T is compact from L"(I') into c(Q).
Because of (3.7), for every 0 < p < 1, the sequence (¢}), converges to zero for
the weak topology in L"(T'), therefore the sequence (£}), converges to zero in C Q).
There then exists an integer depending on p, denoted by n(p), such that

1622 | oy < p-




E. Casas, J.-P. Raymond and H. Zidani 97

Since we have
[P — 4y |"ds = lvg — v1|" ds,
P n(p)
T Bl

(v2?),, converges to v; in L"(I') and (y72¥)), converges to g1 in C(€). From assump-
tions on ® and ¥, we deduce that, (¢’;(”))p, (ag(”) — a), both converge to zero in
L9(Q) and (y7?),, (B2 —b), both converge to zero in L'(T") when p tends to zero.
Thus, thanks to (3.15) and to (3.16), we get

lim 1P le@ < lim 1P e + lim lep® = 9 o) + Jom, 1€ le@ = 0.

Now we set E, = Eg(p), %r,, = (:,‘(”) and v, = v;}(”), conditions (3.8) to (3.13) are
clearly satisfied. Moreover, taking into account (3.12), (3.13) and the definition of v,
we easily verify (3.14). O

Remark. Thanks to (3.9) and to (3.10), we conclude that, even if V' is not patch
complete (in the sense given in Introduction), for every vy, vs € V, we can construct
a diffuse perturbation (v,),, of v1 by vs, such that v, still belongs to V. By setting
vs = ¥ in (3.11), we can see that for M > 0, if v;,v, € V(M) then v, belongs to
V(M), for every 0 < p < L.

4. Proof of the Pontryagin principle

4.1. Penalized problem. Let ||y be a norm on C(£2), equivalent to the usual norm
|| - |l such that (C(Q),| - |ow) be strictly convex and M(Q), endowed with the
dual norm of |- |¢gy (denoted by | - |r@)), be also strictly convex (see [8], Corollary
2 p. 148, or Corollary 2 p. 167). We have

(4.1) limsup (¢’ + p2) "l — 1(¥) T le@)

N0, p
@' =

= max{(&, 2) m@yxc@ | € € 8|() e (¥)}

for every ¢,z € C(Q), where 8](-)*|¢(q) is the subdifferential, of |(-)*|¢(y, in the
sense of convex analysis [7] and (-)* = max(-,0). Therefore, for a given ¢ € C(Q2) we
have

(4.2) (& 2— @) m@xe@+ e o <12t lew ¥ € € 81() o@ (@), ¥ 2 € C(Q),

(

[€lpmeey <1 for every & € () lo@(y)-

Moreover it is proved in ([17], Lemma 3.4) that, since 0|(-)"|c@)(y) is convex in

M() and (M(Q),| - |m@) is strictly convex, then if ¢ # 0, 9|() |c@)(y) is a
singleton and |(-)*|g(q) is Géteaux-differentiable at .

Let (7,7) be a solution of (P). We consider the penalized functional

1

_ 1 1
and, for every n > 0, we define the penalized problem
(P,) inf{J,(y,v) | (y,v) € C(Q) x V(M,), (y,v) satisfies (2.1)},
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where M, = n—3). Tt is easy to see that for every n > 0, (§,7) is #—solution of
(P,). Thanks to the Ekeland’s principle, there exists v, € V(M,) such that

1 1
(43) dE(Unaﬁ) S E: Jn(ymvn) S Jn(yvav) + EdE('Un)'U)

for every v € V{(M,) (y, and y, are the solutions of (2.1) corresponding respectively
to v, and to v).

4.2. Proof of Theorem 2.1.
1. Approximate optimality conditions for the boundary control v, satisfying (4.3).

Let vy be in V. For ng large enough, vy € V(M,) for every n > ng. Apply-
ing Theorem 3.4, we deduce the existence of measurable subsets Ef, such that
LN (ER) = pLNHD),

(4.4) /I"\Eﬂ h(s,v,)ds + /E:: h{s,v)ds = (1 — p)/rh(s,vn)ds + p/rh(s,vo)ds,
@5) [, o v)ds+ [ os,wm)ds = (1—p) [Lolsu)ds +p [ glsw)ds

(4.6) /F\E;; v — 3" ds + /Eg v — 3" ds

=(1=p) [ fon =0l ds+p [ oo —oI" ds,
T r

1
(4.7) Y = Yot P2at 1y, LM ;”rZHC(Q) =0,
(4'8) J(y;;’ 'vg) = J(yn, Un) + pAJy + O(p),

where vf is defined by

(4.9) vh(s) = { ZZ((jg T J\i’fg

y? and y, are the state variables corresponding respectively to v} and to vy, 2, is the
weak solution of

) 0z
Az + @ (2, Yn) 2, = 0in €, 5& + W, (S, Uns Vn)Zn = U (8, Yn, V) — V{8, Yn, vo) on T,

and
AJn=/QF$',(x,yn(:c))zn(x) d:r—i—/FG;(s,yn(s),vn(s))zn(s) ds
—I—/F[G(s,yn(s),vo(s)) — G(8,Yn(5),vn(8))] ds.

On the other hand, thanks to (4.4), (4.5) and (4.6), for every n > ng and every
0 < p < 1, v belongs to V(M,). If we set v = vf in (4.3), it yields

— D oyP
(410) lim J"(ymvn) Jn(ymvn) < EEN_l(I-‘)'
p=0 P n
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Taking (4.1), (4.8) and the definition of J, into account, we get

1 N
(4'11) — VpAJ, — </‘Ln>fg:(yn)zn>M(ﬁ)xC(Q) < EﬁN l(I‘)
where
" (Y V) ’
[(F @) le@ VIE@D lewm -
(4.13) b= SRS (f() A0,
0 if not.

For every n > ng, we consider p, the unique weak solution of

A*pn + (D;/(:L‘, Yn)Pn = VnFé(ma Yn) Mnﬂfé('a Yn) in £,
(4.14)

Opn \I/;(S, Yns Un)Pn = VnG;;(S’yna Un) + Unffé(':yn) on I,

anA*

which satisfies the Green formula :
9y
. : n\ g \I// ny Un
(@15) [ polAy + @y(z,ua)u) de + [ palg "+ V5, vm va)y) ds

= /QVnF{,(xayn)y dz +/FVnG;,($,men)y ds + <Mn7fgll('ayn)y>M(Q)xC(Q)a

for every y € {y € H(Q) | Ay € LYQ), 'a%% € L"(T')} (pna is the restriction of p,
to  and g, is the restriction of u, to I'). With this Green formula, with (4.11) and
the definition of AJ,, we get

(4.16) /F[VnG(s,yn,'vn) — P Y (8, Yn, Un)] ds

1
_<_ -/:[‘[VnG(tg;y’na UO) —pn\I/(S, yn’ UO)] ds + ﬁﬂN_l(F)

for every n > ny.

2. Convergence of sequences (Vn)n, (in)n and (Pn)n.

We remark that

|tnliagy + v = 1-
The sequences (vy,),, and (in)n are respectively bounded in R and in M(R2), there
then exist 7 € R, i € M(Q) and a subsequence, still denoted by (¥, fin)n, such
that

(4.17) Uy — U, i — I weakly star in M(S).
Let 1 < 7 < N/(N — 1) for which the following embeddings are continuous
W (Q) — L9 (Q), W7(T) — L7 (D).
From Theorem 3.2, it yields
IPallwrr @) < Cs{VnHF;('ayn)HLl(n) +Vn||G;;('ayna'Un)”L1(F) + |Nn|M(Q)|fg;('ayn)|C(Q)}'
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Since the sequences (Vn)n; (tn)n, (Yn)n and (v,), are bounded respectively in R,

M(Q), C(Q) and in L7(T'), the sequence (p,)n is bounded in W7(£2). There then
exist p € WHT(Q) and a subsequence, still denoted by (p,)s, such that (p,), weakly
converges to p in W17(€). Therefore, (p,), weakly converges to  in L7 (£2) and the
sequence of traces (p,|r), weakly converges to the trace p|r in L7 (). Let us prove
that p is a weak solution of equation (2.4).

Let ¢ be in W1(Q), for every n > ng, we have :

N
(4.18) /Q{ > aijDipnDjp + B, (2, yn)Prip} dz + /r W2, (8, Yns Vn)Prip ds

£,7=1
= /Q VHF;(J;) yn)ga dz + /1_‘ VHG;;(Sa Yn;s Un)‘PdS + </-Lm f;l/(’ yn)(p>M(Q)xC(Q)a

and the Green formula (4.15). Moreover, since fp v, — 9|"ds < (dg(vn, 7)) T M <

(L)%, (vn)n converges to o in L7(T') and (y,). converges to 7 in C(2). Thanks to
assumptions on ®, ¥ F, G, f, we have

1171111 ||©;;(a yn) - (I);/y(,g)”Lq(Q) = 0, 1171?.'1 ”F;(ayn) - F?;(’g)”LI(Q) = 0,
lin [0, (9, 00) = ¥, (58 Oy = 0 i 1G4y 00) = Gy (58 D)l|aey = O,

Thus, by passing to the limit in (4.18) and in (4.15), we prove that p is the unique
weak solution of the equation (2.4) which satisfies the Green formula :

Oy
_ 7 — iy ! — —
(4.19) /Qp(Ay + @, (z,7)y) dx + /F p(——am + U, (5,7,0)y) ds
= /QDF;(x,y)y dz + /F vGy(s,9,0)y ds + (B f, (. DY) m@xo@),

for every y € {y € H(Q) | Ay € LY(Q), 5‘—?—}’; € L™(I"}. Because of uniqueness of the
weak solution of (2.4) satisfying (4.19), we can deduce by classical arguments that p
is independent of 7 and that all the sequence (p,,), weakly converges to p in Wh™(Q)
for every 1 <7 < N/(N —1).

3. Pontryagin’s principle.

Notice that (v,), tends to # in L7(I'). By letting n tend to infinity in (4.16), with
Fatou’s Lemma, (applied to the sequence of functions ¥,G(:,0,v,(-))) and the conver-
gence results stated in step 2, we obtain

(420) [ (s, 5(5),(5),5(s),7) ds < [ H(5,5(6).0(s), B(5),7) ds,

for every vy € V.
On the other hand, from the definition of u, and from (4.2), we deduce

(421)  (n2 = FCo9)) o <O for overy z € {z € C(0) | 2 < 0},
By passing to the limit in this expression, we obtain

(422) (32— F(,0)m@mom <O forevery z € {z € O(@) | 2 0},
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which is equivalent to z > 0 and (i, f(-,9)) m@xc@ = 0. To prove that (7, f) is
nonzero, we recall that U2 + |un|}4q) = 1. If 7 > 0, the proof is complete. If # =0,
we can prove that |i|q) > 0 by using lim, |n|sq) = 1. Indeed there exists a ball
B(z;2¢) C {z € C(Q) | z < 0} centered at Z and with radius 2¢ > 0. We can choose
2, € B(0;2¢€) such that {Kn, 2a) myxc@) = €lbinlpm)- Since 2+ z, € {z € C(Q) |
z < 0}, from (4.21), we get

<iu’n7 Z+ 2 — f(7 yn))M(f_l)xC(Q) <0.
By passing to the limit, we get

e+ < 0,2 = f(, D)) m@xc@ <0,
thus ji # 0.
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Designing for Optimal Energy Absorption II,
The Damped Wave Equation

STEVEN J. COX
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ABSTRACT. We consider the wave equation in a bounded domain with zero Dirichlet data
and damping proportional to velocity and pose the problem of minimizing, with respect
to damping, the maximum, over all initial data of unit energy, of the infinite time integral
of the instantaneous energy. We show the minimum to exist over those dampings that
uniformly avoid zero and infinity. We provide an exact minimum over the class of constant
dampings and proceed to show it to be a critical point over the class of bounded dampings.
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1. Introduction

In [1] we minimized two standard merit functions, decay rate and greatest total
energy, over a class of finite dimensional damped linear systems. Analogous results
for the decay rate in the context of the damped wave equation can be found in [5],
[4], and [2]. In this note we minimize, over a, the greatest total energy associated
with the damped wave equation,

(1.1) ug(z,t) — Au(z, t) + 20(z)uy(z,t) =0, ul:,t) € HF(Q)

on the open bounded connected set @ C R? The greatest total energy is simply
the maximum, over all initial data of unit energy, of the infinite time integral of
the instantaneous energy. In order to make these notions precise let us take U(¢) =
[u(t) u(t)] and interpret (1.1) as U; = A(a)U where

0= (3 B)s DU = ) 0 HE) x @)

is densely defined in the Hilbert space X = H{}(2) x L*(Q) with inner product
([f, g fuvlx = [ Vf-Va+guda.
This A(a) is the infinitesimal generator of a semigroup T'(¢;a) and U(t) = T'(t;a)V

solves the Cauchy problem U; = A(a)U, U{(0) = V. The associated instantaneous
and total energies are, respectively

B = TG VI and [T ITEVIE e

This work was supported by NSF Grant DMS-9258312.
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The greatest total energy, 71(a), is now the supremum of the total energy over all
initial data, V, of unit energy. That is,

(1.2) Ti@= sw [TVt
IVix=1~0

In §2 we show that 7;(a) is finite over the class of bounded nonnegative a and in fact
that it attains its minimum there. In §3 we compute 7;(a), by hand, for constant a
and so readily identify the best constant damping. In §4 we show this best constant
to be a critical point of 77 in the class of bounded a.

2. Existence of an Optimal Design

We denote by {\,}22, the increasing sequence of eigenvalues of —A on Hj () and
by {g.}32, the corresponding orthonormal base of eigenfunctions.
We choose § small and positive and define

ad = {a € L(Q) : §/%1/2 < a(z) < /M/(26)}
From the literature we may conclude, for such a, that 7;(a) is finite and that the
total energy may be represented as a quadratic form. More precisely,

Theorem 2.1. If a € ad then
(2.1) IT(t; a) |3y < 4e*V™, £ >0,

and there ezists an Hermitian positive semidefinite endomorphism B(a) on X for
which

(2.2) 2(B(a)A(@)V,V)x =—|VI%, VYV € D(4),
and
(2.3) <m@uwxzéﬁw@@w&ﬁ, vV e X.

Proof. The estimate in (2.1) follows directly from Theorem 1 of Rauch [8]. Datko [6]
has shown that (2.1) is a necessary and sufficient condition for the existence of the
stated B. g

As ad is compact with respect to the weak* topology we need only show a — 71(a)

to be weak* lower semicontinuous. Let us denote weak* convergence by —, weak
convergence by —, and strong convergence by —.

Theorem 2.2. If {a,} C ad and a, = a in L*®(Q) then T(t;a,)V — T(t;a)V in X
foreachV € X.
Proof. Recalling Kato [7, IX.2.16] we note that it suffices to show that A~ (a,)V —

A7 (a)V. Set V = [f,g] and define [yn, 2] = A7} (an)[f, 9] and [y, 2] = A7} (a)[f, ]

[Yn, 20) = [A7'(2a,f +9), f] and [y,2] = [A7}(2af +g), f].
As a result,

(2:4) 1A @)V = A (@)Viix = 2[VA™ (an - a)f>,
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where || - ||2 denotes the L2(Q) norm. If w, = A™*(a — a,)f then w, satisfies
—Aw, = (a, — a)f, w, € Hy(Q).

Upon integrating each side against w,, we find

1 1
. 2 — 2o nlla-
(2.5) lwallz < AlIIan|I2 < 5\/A—lllf||zllw ll2

As a result

1 1
[wnl2 < 6—\/)\—1||f||2 and  |[Vunllz < <[ fl2-

From these bounds it follows that w, — w in H(Q2). Hence, passing to the limit in
the weak form

/Qan-Vqﬁdx:/Q(an—a)fcbdw Ve HNS)

we find
/QVw Vedr=0 Y¢e H\(Q),

i.e., w is identically zero in Q. As w, — 0:in L?() it now follows from (2.5) that
wy, — 0 in H}(Q). Recalling (2.4), we have shown that A=(a,)V — A™(a)V in X.
"

Theorem 2.3. If a, — a in L°(Q) then Ty(a) <liminf 7i(an).

Proof. Tt follows from the previous theorem that ||T'(a,)V|% — |T(#;a)V|% for
each ¢ > 0. In addition it follows from (2:1) that ¢ — ||T(¢;a,)V|% is uniformly
dominated by an integrable function. The Lebesgue dominated convergence theorem
now yields

[T avikdt — [ 1T v,

or, in the language of (2.2), (B(a,)V,V)x — (B(a)V,V)x. By the nature of the
supremum in (1.2) it follows that to each ¢ > 0 there corresponds a unit vector V;
for which

Ti(a) —e < (B(a)Ve, Ve)x-

In addition, on taking the limit inferior of each side-of (B(a,)V, Vo)x < Ti(an) we
find

(B(a)Vz, Va)x < liminf 7 (an),

and hence
Ti(a)—e < Iinrri%)rolf’li(an).

As ¢ is arbitrary our claim has been established. g
Corollary 2.4. a — 7Ti(a) attains its minimum on ad.

As a candidate for the global minimizer we now carry out the exact minimization
of 77 over constant a.



106 Designing for Optimal Energy Absorption II, The Damped Wave Equation

3. The Case of Constant Damping

In a manner analogous to the case of friction damping of finite dimensional systems,
see [1, §2], we obtain an explicit representation of B(a).

Theorem 3.1. If a is constant then

1 -1 _1a-1
B(a):(2a !}A 21A )

2 2a
Proof. Tt is a simple matter to check that this operator is an Hermitian, positive

semidefinite endomorphism on X satisfying (2.1). There are a number of means by
which this B(a) may be derived. One way is to note that for smooth solutions the

instantaneous energy obeys

d (1 9 d
B(t) =~ {5 B0 + [ (wu +au?) do'p = —Z(B@UE), V),
and hence that the total energy is simply (B(a)V,V)x. A second approach is to note
that B(a) is (formally) a solution to the associated Liapunov equation A*(a)B(a) +

B(a)A(a) =1 ']

The eigenvalues of B(a) are

1 2
(3.1) Tin(a)=§5+a—i—-—— V;\J”\" n=1,2,...

and its (unit) eigenvectors are

(32) V:l:n = :U':I:n[]- c:i:n]Qn
where
(3.3) Cin=—a£ /a2 + N, and pin= (A +ch,)

The greatest of the Tan(a) is 71(a) and, as A; is simple, so too is 71(a). With this
explicit expression in hand we may easily establish (compare [1, Theorem 2.4))

Corollary 3.2. The greatest total energy, T1 : Ry — Ry, is strictly convez and attains

its global minimum at
— [V5-1
y 1 V642 [vVE-1
Ti(a) = 2 5

We record for future use the fact that

Its minimum value is

(3.4) =282+ X\

follows on substitution of & into (3.3)
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4. The Perturbed Operator

We now show that & is in fact a critical point for 77 : ad — R,. In particular, we
shall show that, for each b € L*(9),

Ti(a + kb) = T1(a) + O(x?), as K — 0.

In fact we compute the gradient, 877, at an arbitrary admissible constant, a. To
begin, we fix b € L®(£2) and consider A(k) = Ay + kA, where

0 I 0 0
AO = (A —2&) and A] = <0 —2b) .

We denote by T'(t; k) the semigroup generated by A(x) and recall, see, e.g., Kato [7,
IX.2.1], that, for fixed t, x — T'(t; &) is entire and

= i K", (t)

n=0

where Ty(t) is the semigroup generated by Ay and

t
Tooi(t) = /0 To(t — 8)Ar1T(s)ds, n> 1.

If & is sufficiently small then a+ b will lie in ad and so, by Theorem 2.1, there exists
a B(a+ kb). We now express this as a power series in & by following the construction
in Datko [6]. In particular, we define,

B(t;k) = /T*sn (snds—Zm”B

n=0

where

/ Ti(s)To(s)ds and By / (T (8)T(s) + T2(s)To(s)} ds.

As t — oo each By(t) converges in the strong operator topology to an operator B,.
It follows that

B(a + kb) = Z K"By,
n=0
is, in the language of Kato [7, §VIL.7], a selfadjoint bounded-holomorphic family of
operators. As such we may avail ourselves of the perturbation series of [7, §II.2.2].
In particular, as 7;(a) is simple, the greatest eigenvalue, 7;(a + b), of B(a + kb)
satisfies
Ti(a+rb) = Ti(a) + 3 6T,

n=1
where 7](") may be expressed in terms of the eigenvectors of B(a). More precisely,

(B, V)%

T = (BiVi,Vi)x and T = (B, Vi)x + 3 SR
1= “4n

n#l
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where 7, and V,, are the eigenvalues and eigenvectors of B(a), see (3.1)—(3.3). Ac-
cordingly we begin the evaluation of

(B Vidx = [ (TS OT:(0) + TR OTo(O}A, Vi)x e
- 2/0°°(T1(t)vl, To(t)Vi)x dt.

It will be convenient to suppose that a® < A; and to label the frequencies

w; = \/)}j —.a2.

As V; is a constant multiple of ¢; and Ay is.a constant coefficient operator it follows
that To(¢)V; is simply

ot cos(wit) + (¢1 + @) sin{w; t)/w
TO(t)Vi = e (Cl cozgwltg - Eac,l +))\1) s(in(w)l/t)/w1> 1

For ease of reference let us express this as

TV, = (y,l(zg>(g.1.

vi(t)
Regarding T3 (t)V; we must first compute Ty(t —5)A1Ty(s)V1. This is the solution, at
time t — s, to W/ = AgW subject to
{0
W(0) = AiTo(s)Vi = —2bq1(s) (1) :

We find, via separation of variables, that
N o —alt—s), ad sin{w;{t — 8))/w; ‘ '
W(t—s)=—2 %(s) ; (cos(wj(t — 5)) — asin(w;(t — 8))/w; 4;{bas, 4502

Hence,
TtV = /Ot W(t—s)ds= _22 (gigg) q; (b1, g5)2

where
05(t) = [ €Iy (s)sin(uy ¢ — 8)) o3 d.
It follows that
<T1(t)V17T0(t)Vl>X = —2(bq1, 1)=& (t)
where
&(t) = M Dy () + a1 (w1 (8)-

It is important to note that & is simply a product of sums of terms involving sine,
cosine, and the exponential and so may be integrated by hand. Its length (greater
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than one page) however precludes us from effectively presenting it here and compels
us to adopt a symbolic means (Maple) in the final evaluation of

T = (BVi, V)x = 2/0 (LW, Tit)V)x dt = —4<bQ1,Q1>2/0 &i(t)dt

202 — 2 — A\

202\ +¢2)

If b = 1 this indeed agrees with what one finds on differentiating the 7; offered in
(3.1). In addition, from (3.4) it follow that 7Y = 0 when evaluated at the best
constant, d.

As to whether or not @ is a local minimizer we note that components for the
calculation of ’1'1(2) are all here. The complexity of the terms however has rendered
this calculation a formidable exercise.

Even with ’2'1(2) in hand one has only a local result. A numerical study, analogous
to [2], is currently underway.

Finally, we note that V — (B(a)V,V)x is a Liapunov function, see [3], with which
one may study the stability of the trivial solution of (1.1) with a right hand side
depending on u, u;, and Vu.

= (th (h)
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On the Approximate Controllability for Higher Order
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ABSTRACT. We prove the approximate controllability property for some higher order par-
abolic nonlinear equations of Cahn-Hilliard type when the nonlinearity is of sublinear type
at infinity. We also give a counterexample showing that this property may fail when the
nonlinearity is of superlinear type.
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1. Introduction

Let © be a bounded open subset of RY of class C?™, T > 0, w a nonempty open
subset of Q, f a continuous real function and k¥ € N such that 0 < 2k < m. The
main goal of this work is the study of the approximate controllability of the following
semilinear equation with Dirichlet boundary conditions:

Y + (=A)"y + (=AY f(y) =h+vx, inQ:=Qx(0,T),

| o
(1.1) gy_gz , §=0,1,...,m—1 on X =90 x (0,T),
y(0) = o in &,

where v is a suitable output control, x,, is the characteristic function of w, v is the
unit outward normal vector, h € L2(0,T : H-™((2)) and yo € L*(2). Due to the term
X the controls are assumed supported on the set O := w x (0, T). Problems as (1.1),
sometimes known as Cahn-Hilliard problems, appear, with m = 2, in the study of
phase separation in cooling binary solutions and in other contexts generating spatial
pattern formation (see [6], [8] and the references cited therein).

We recall that problem (1.1) satisfies the approximate controllability property, at
time 7" with states space X and controls space Y, if the set

{y(T,-:v): veY, ysolution of (1.1)}

is dense in X.

The main goal of this paper is to extend the approximate controllability results on
second order problems, m = 1 and k = 0 (see e.g. [9], [10] and [7]) to the case of
higher order equations for which the maximum principle does not hold, in general.

Preceding Page Blank
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Our first result gives a positive answer when f is assumed to be sublinear at the
infinity:

Theorem 1.1. Assume that f satisfies the following conditions: there exist some pos-
itive constants ¢; and ¢y such that .

(1.2) |f(s)| <c1+cols] forallseR
and
(1.3) there exists f'(so) for some sp € R.

Then problem (1.1) satisfies the approzimate controllability property at time T with
states space X = L2(Q) and controls space Y = L*(0).

In contrast to the above result, we shall prove that when f is superlinear the
approximate controllability property does not hold in general, as explained in Section
4. Therefore if, for instance, f(s) = |s[P~*s Theorem 1.1 gives a positive approximate
controllability result for 0 < p < 1. The results of section 6 provide a negative
approximate controllability answer when 1 < p < co. The similar alternative was
obtained in Diaz-Ramos [7] for second order parabolic semilinear problems.

We remark that the existence of solutions in the class
y € L*0,T; HX()) N C([0,T]; L), f(y) € L* (@), A*f(y) € L*(0,T; H-™()),

is also obtained as a by-product of Theorem 1.1 for a suitable subclass of controls.
The uniqueness of solutions can be easily proved if, for instance, f is nondecreasing
or Lipschitz continuous. Those uniqueness results are not needed in our arguments.

2. Approximate controllability for an associated linear problem

In order to prove Theorem 1.1 we follows the same scheme of proof than in [9], [10]
and [7]. We define the function

7(9) = f(s0)

S — 8

9(s) =

From assumptions (1.2) and (1.3) we have that ¢ € L*(R) N C(R). The conclusion
will be derived from a fixed point argument. As f(s) = f(so)+g(s)s—g(s)so, we shall
start by considering the approximate controllability for a linear problem obtained by
replacing the term f(y) b

9(2)y + f(s0) — 9(2)s0,

where z is an arbitrary function in L?(Q). Notice that when z = y this expression
coincides with f(y) and that if we denote g(2(t,z)) := a(t, ) and

2.1 h(a) = —(=A)*f(s0) + (=A)*(a(t, ©)s0),
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then a € L*®(Q) and h(a) € L®(0,T; H=2*(£2)). More in general, given a € L™(Q)
and h(a) defined by (2.1), we consider the approximate controllability property cor-
responding to the linear problem

v+ (=) y+(=A) (a(t, 2)y) =h+h(a)+ux, inQ:=0x(0,T),
22) { &V _,

B0 , 7=01,....m—1 f)nZ::(')Qx(O,T),
y(0) =0 in Q.

Before stating an approximate controllability result for this problem, following Lions
[14] and Fabre-Puel-Zuazua [9], [10], we consider ¢ > 0 and y; € L*(Q2) and we
introduce the functional J = J(-;a,yq) : L) — R defined by

1 2
- (23) Jpoia,a) = I6%) = 5 ([ letto)ldodt) +¢ 1@ iz = [ v, de
where (¢, z) is the solution of the backward problem

-+ (=AY +a(t,z)AFp =0 inQ:=Qx(0,7),

J
(2.4) %:0  i=0,1,....m—1 onX:=aQx(0,T),

To study the above backward problem we introduce the space
W= {y € L*(0,T; Hy(Q)), v € L*(0, T; H™(Q))}.
The following result will be used later

Proposition 2.1. Given h € L*(0,T; H™(Q)) and yo € L*(X2), there exists a unique
function y € W satisfying

[ v+ (-A)™y+alt,z)A'y=h  inQ,

| o9

(2.5) 9Y_o , j=01,....m—-1 on3,
oI .
y(O):yO 'LTLQ.

Furthermore, we have the estimate

(2.6) llllz2or;m @) + el 20, 38-m(2)) < C (||h||L2(o,T;H—m(Q)) + ||yoHL2(n)) ,

where the constant C' depends only on M :=|| a ||zoq) (provided that Q, T and m
are kept fized). Moreover, if h € L*(Q), the solution y also satisfies that

2.7 yeL*6T;H™Q)) and y, € L*((6,T)x Q) forallé € (0,T).
Proof. For all n € N we define y™*! as the solution of the following iterative problem

Y+ (=AY = b — a(t, z)AFy"  in Q,
ajyn+l

— =0 , 7=0,1,...,m—1 on %,
i )
y*rH0) =y in Q,
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where 1°(t) := 0 for all ¢ € [0, 7). The existence of a solution y™ € W can be found,
for instance, in Theorem 3.4.1 of Lions-Magenes [15]. Thus, for all n € N\{0,1},
Yyt — g satisﬁes

@™ — g+ (A (Y - y) = —alt, @) AR -y @,
8]( n+1l __ n) ]
. =0, j=01,....m—-1 on %,
ovi
(™ —y™)(0) =0 in ©2
and therefore
gy e HY™(Q) == HY(0,T; L*()) N L*(0, T; H*™())

(2.8)

and
9™ =" [lmem@< a1 || aA* (@™ =47 N2
(see, for instance, Theorem 4.6.1 of Lions-Magenes [16]). Then, since

™ (Q) c (0, T]; H™(2))

with continuous embedding (see, for instance, Theorems 1.3.1 and 1.9.6 of Lions-
Magenes [15]), there exists ¢, = co(T') such that

9™ =" leqoanmg @< e | e (W™ = 4™7) llz2e -
Further, it is clear that we can choose Cy = Cy(T') such that for all ¢ € [0, 7]

Iy =4 leqamp@n< Co | ad (Y™ =y ) lz2(o.xe) -

Hence,
| W™ =9 P (oMY [ I A" =y )(7) [y dr, forallt € [0,T]

and therefore, by using the Poincaré inequality, there exists a constant K, indepen-
dent of M, such that

R
I ™ =y @< (KM)Q/O I " =" )(7) iy dr, forall £ € [0,T].
Then, for every ¢ € [0, 7] we deduce that

1@ =) Py < K2 [ 772 = 9)(5) Py dra- -

<y [ [ 7 =t g dm---dn

n— tn_
< (K*M?) l(n 1)1 1y =y oz @)
(K2M2T)n 1
< w I v -y ”%(IO,T];HS’(Q))’

which implies that
Fy™" = 4" leqorympn—0 as m— oo
and therefore, by (2.8), we deduce that

| @™ —y™)e 207, m-m@)— 0 88 n — oo.
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Then, there exists y € W such that
Yo —y InW asn— oo
In order to prove that y satisfies (2.5) we point out that
A™y" — A™y in L*(0,T; H™(Q)) asn — oo,
AFy™ — A%y in L2(Q) asn — oo,
and
y* —y, in L*(0,T; H ™(R)) asn — oo.

this implies (passing to the limit) that y is the solution of (2.5). In order to prove
(2.6), we “multiply” in (2.5) by y. Then it is easy to see that

(2.9) Nyl zeommy @) + 19l r2omm-m@)
< C (Il + ol + lllz=@) -

Furthermore,

i
Il y(t) ”%%Q)S | ¥(0) “%2(9) +e || b “%2(0,T;H—m(ﬂ)) +es [ llyls) “%2(9) ds.
0

Then, applying Gronwall’s inequality (see, for instance, Lemma 4 of Haraux [11]),
we deduce that

1) 1220)< (I 900) 220y +2 || B [Beoirmeayy) € VE€[0,T).

From here, we obtain that

Iy llz2)< ea (Bllz2o o + lvollz2(@)

which implies, together with (2.9), inequality (2.6). Now, thanks to (2.6) and the
linearity of Problem (2.5), we deduce the uniqueness of solution.

Finally, if h € L*(Q), since y(6) € H§() for all § € (0,T), taking y(6) as initial
datum and applying Theorem 4.6.1 of [16], we get (2.7). [ |

As usual in Controllability Theory we shall use a unique continuation property for
solutions of the dual problem (in our case Problem (2.4)).

Lemma 2.1. Let w be a nonempty open subset of Q. Assume that
¢ € L*(0,T; Hy'(€)) n C([0,T]; L*(%)
satisfies (2.4) and that =0 in O =w x (0,T). Then ¢ =0 in Q.

Proof. From Proposition 2.1 (applied with backward time) we deduce that ¢ €
L2(0,T — & H*™(Q)) for all § € (0,T). Then Lemma 2.1 follows from Theorem 3.2
of Saut-Scheurer [17]. |

The following two results are easy adaptations (by using Lemma, 2.1) of the similar
ones given in [9], [10] for second order parabolic problems.
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Proposition 2.2. The functional J(-;a,ya) is continuous, strictly conver on L2(Q)
and verifies

J 0.
(2.10) fiming TS0 5
60l 2y—o0 || 0 [l 220

Further J(-;a,vq) ottains its minimum at a unique point @° in L2(Q) and
(2.11) =0 & Jull@<e
Proposition 2.3. Let M be the mapping

M: L=(Q) x [2(Q) — L*Q)

(a(t7 :L'), yd) - @O-
If B is a bounded subset of L°(Q) and K is a compact subset of L*(2), then M(B X
K) is a bounded subset of L*(Q).

In order to characterize the duality of problem (2.4), we recall that given a convex
and proper function V' : X — R U {+oc} on the Banach space X, it is said that a
element py of V' belongs to the set 8V () (subdifferential of V' at zy € X) if

V(zo) = V(z) < (pp,zo—2z) VzelX.

It is well known that that if V' is Gateaux differentiable its differential coincides with
its subdifferential and that z, minimizes V over X (or over a convex subset of X)
if and only if 0 € dV(zo). Finally, if V is a lower semicontinuous function, then
Do € OV {xy) if and only if

(po,z) < hli%1+ Vizo+ h? — V(o) (< +o0) VzelX.

(See, for instance, Aubin-Ekeland [3]). Coming back to the functional J we have:

Lemma 2.2. For every ¢° € L*(Q) (¢° # 0), if ¢ is the solution of (2.4) satisfying
o(T) = ¢°, we have that

0J(¢%a,yq) ={€ € L3(Q), v e sgn(p)xo satisfying

/Q £(2)0°(@)de — ( /o |<p(t,x)|d2) ( /O v(t,x)&(t,x)dE)

0
©(z) o 0 0 2
+e& | ————0"(x)dx — )0 (x)dx V8" € L*(Q)},
where O is the solution of (2.4) satisfying 0(T) = 6°.

Proof. It is an easy modification of Proposition 2.4 of [10].

Let us prove the approximate controllability property for an special version of the
linear problem given in (2.2).
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Theorem 2.1. If || yq ||12()> € and @ is the solution of (2.4) corresponding to §(T') =
@°, with @° minimum of J(-;a,yq). Then there exists v € sgn(@)xo such that the
solution of

Y+ (—A)"y + (=A%) (a(t, 2)y) =| ¢ [l2200) vX0 0 Q,
(2.12) % 0 (j=0...(m—1) on %,
y(0) = in ,
satisfies
@
W) =48 = S50 ey
and then || y(T) — va |l r2@)= €-

Remark 2.1. In the case || yq ||z2@)< €, if we use the null control, we obtain y = 0
and therefore || y(T) — yq |2y < €.

First of all we prove the existence and uniqueness to problem given by (2.2).

Proposition 2.4. Assumed yo € L%(Q), h € L*(0,T; H™(Q)) and a(t,z) € L®(Q),
there exists a unique function y € W satisfying

e+ (—A)"y + AMa(t,z)y) =h  in Q,

¥
(2.13) O _o  j=01,...m—-1 o3,
ol .
y(o) =Y m Q

Moreover, we have the estimate

(2.14) Nyl zeo.z;mp @)+ el 20, m5-m(2) < C (||h||L2(o,T;H—m(Q))+Hyo||L2(Q)) ,
where the constant C depends only on M (provided that Q, T and m are kept fized).

n-+1

Proof. For all n € N we define again y™*! as the solution of the iterative problem

Yt o+ (—A)myH = h— ARa(t, z)y")  in Q,
ajyn+1

— =0 , j=0,1,....m—1 on X,
ol )
y"H0) = yo in Q,
where 9°(t) := 0 for all ¢ € [0,T]. The existence of a solution y™ € W can be found,
for instance, in Theorem 3.4.1 of Lions-Magenes [15]. Thus, for all n € N\{0,1},

71 — o™ is solution of
=) () ) = A,y @
¥} Y15 — M
(2.15) —Q57£l=0 , j=0,1,...,m—1 on %,
(™ —y)(0) =0 in

and therefore (see again Theorem 3.4.1 of Lions-Magenes [15]) y"™ — y™ € W and

(2.16) [y =y lw<e |l a@™ — ™) 12 -
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Then, since W C C([0, T}; L*(2)) with continuous embedding (see, for instance, [12]
or [15]), we have that

9™ =4 lleqozzan< ez | aly™ —v™ ™) Nz -
Further, as in the proof of Proposition 2.1, we can choose Co = Cy(T’) such that

I v = 4" lleqoazz@n< Co | a(y™ — ") llzaopxey, forallt € [0, 7).

Hence,

t
I (™ = ™)) [Z2@)< (CzM)2/O I (" = y*)(7) |72y dr, forall ¢ € [0,

Then, for every ¢ € [0,T] we deduce that

| ™ =990 Bay< @M [ [ 77162 = ) ey drn-

T1 Tn—1
< (022M2>n_1 Iv* — v Eomizz@y @7 - - dms
0J0 0

S (022M2)n—1

tn—l
(n— 1)! I iy2 - yl “(22([0,T];L2(Q))

= TI%,— | v — y' [I(QZ([O,T];LZ’(Q)))
which implies that
I " =" lleqoayze@)y— 0 as n— o0
and therefore, by (2.16), we deduce that
|y —y" [w— 0 as n— oo
Then, there exists y € W such that
Y, —y InW asn— oo
The end of the proof is similar to the end of the proof of Proposition 2.1. [ ]

Proof of Theorem 2.1. Using the subdifferentiability of J{.;a,ya) at @° (# 0 by
(2.11)), we know that

0 € aJ(@),
which is equivalent, from Lemma 2.2, to the existence of v € sgn(@)xo, such that
€
217) — | B |l (/vx,t@m,tdmdt) =T—-——/A0x0°xda¢
(217) ~ 18l ([ v 00,1 I RACC
—/de(:v)eo(x)dx

On the other hand, as y € W, if we “multiply” by 6 in (2.12) we obtain, by (2.4),
that

(2.18) [ u(T,2)0°(@)dadt = @ lrco ( /O v(x,t)@(m,t)dxdt)
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Then, from (2.17) and (2.18), we obtain

~0
/Mﬂ@ﬂ@@ﬁz/@@%ﬂ—%ﬁLJWQMﬁ vV 6° € LHQ)
o 9 Il @° llz2(e)
=0
and we conclude that y(T) = ya — ev—5——
I @° llz2(e)
Now we are ready to prove a linear version of Theorem 1.1 for problem (2.2)

Corollary 2.1. Let || y4 ||z2()> € and @ the solution of (2.4) corresponding to §(T') =
@°, with @° minimum of J(-; a,ya — y(T; a,0)), where in general y(t; a,u) denotes the
solution of (2.2) corresponding to the control u. Then there exists v € sgn(P)xo
such that the solution of

e+ (—A)"y + (=A%) (a(t, 2)y) = h+h(a)+ || @ |12 o) vXo in Q,

§iyf=0 (j=0...(m-1)) on %,

y(0) = o in Q,
satisfies

| ¥(T) = ya llL2@< €
Proof Weput y = L+ Y, where L = L(a) satisfies

L+ (A)"L+ (=A*)(a(t,z)L) = h+ h(a) inQ,
(2.19) %Jﬁj=0 (1=0...(m-1)) ‘ on X,
7(0) = yo in Q

and Y = Y(a) is taken associated to the approximate controllability problem

Y+ (A)"Y 4 (=AF)(alt,2)Y) = u(a)xo inQ,

Y )
W:o (j=0...(m—-1)) onY,
Y({0)=0 in Q,

with desired state yg — L(T), i.e. such that | Y(T') — (ya — L(T)) ||< e. Notice that
the existence of such a control u(a) is consequence of Theorem 2.1, In particular,
if || ya — L(T) ||I< €, we can take u(a) = 0 and if || yg — L(T) ||> ¢, then we take
u(a) =|| @(a) ||y v(a), where v(a) € sgn(@(a))xo and $(a) is the solution of (2.4)
with initial value M( (a(z,t),yq — L(T)) ) defined in Proposition 2.3. It is obvious
that such function y and such control u(a) lead to the conclusion. [ ]

3. Controllability for the nonlinear problem

As mentioned before, we shall useé a fixed point argument to prove Theorem 1.1.
In fact we shall deal with multivalued operators. Let us recall a well-known result:
the Kakutani’s fixed point Theorem. The usual continuity assumption in other fixed
pont theorems is replaced here by the following notion:
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Definition 3.1. Let X, Y two Banach spaces and, A : X — P(Y) a multivalued
function. We say that A is upper hemicontinuous at o € X, if for everyp € Y', the
function

Tr— U(A(x)’p) = sup <p,¥Y >y'xy
yEA(T)

is upper semicontinuous at To. We say that the multivalued function is upper hemi-
continuous on a subset K of X, if it satisfies this properties for every point of K.

Theorem 3.1. (Kakutani’s fized point Theorem). Let K C X be a conver and
compact subset and A : K — K an upper hemicontinuous application with convez,
closed and nonempty values. Then, there exists a fized point xo, of A.

For a proof see, for instance, Aubin [2].

Proof of Theorem 1.1. We fix y; € L?(Q) and € > 0. By using Corollary 2.1, for
each z € L2(Q) and ¢ > 0 it is possible to find two functions ¢(z) € L'(Q) and
v(z) € sgn(p(z))xo such that the solution y = y* of

?g_+ (=A)™y + (—A)*(g(2)y) = h + h(g(?)) + uxo in @,
Ty

(3.1) —2=0,4=01...m—1 on X,
oI )
y(0) = yo in Q,
(where u = u(2) = |¢(2)|1(0)v(2)) satisfies
(3.2) [Y(T) — Yal 2@y <&

Here (z) is the solution of (2.4) with initial value M( (9(2),y4 — L(2;T)) ) (see
Proposition 2.3) and a(t,z) = g(z), where is L(z;T) the solution of (2.19), with
a = g(z), at time T .

Lemma 3.1. The set
{yd - L(Z,T), RS L2(Q)}a

is relatively compact in L(S).

Proof of Lemma 3.1. Applying Proposition 2.4 it is easy to see that the set of solutions
L(z) of

Ly + (=A)"L + (-A)*(g(2)y) = h + h(g(2)) n@Q,

)
(3.3) a—l./=0,j=0,1,...m—1 on X,
oI
L(0) =1y in Q,
satisfy
(3.4) I L(z) lw< K1+ | v 2@ + || B ll2zm-me@p) ¥ 2 € L(Q)

with K > 0 independent of z. Recall that || g(2) ||ze(g)< M with M independent of
z. Now, let L(z,) be a sequence of solutions (3.3) with z, € L?(Q). We must prove
that there exists a subsequence (that we rewrite as L(2,)), such that

| L(20;T) — L(zn41; T) |l2@p— 0 as n — oo.
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By a compactness result due to Aubin [1], we know that
W c L*(0,T; H"*(Q)) with compact embedding.
Therefore, by (3.4), we can suppose that
| L(z) — L(2n+1) |2200,735712)— 0 as n — oo.
Further, it is easy to prove that L(z,) — L(z,+1) satisfies
| L(z; T) = L2015 T) |22y

< - /(]T<Dk (9(20) L(2) = 9(2n41) L(zn41)) » D* (L(zn) — L(2n41))) vy i ()4t

T
+ [ (D" (9(zn)s0 = 9(zms1)s0), D (Lzm) = Llzss -yt
Then, by (3.4), since k < m — 1 (notice that k =0 if m = 1),
| L(20; T) — L(2n+1; T) [l%?(n)ﬁ K | L(2s) — L(zn+1) “%Q(O,T;H"’—l(ﬂ))_’ 0 asn— o0
and the proof ends. [ ]

Completion of Proof of Theorem 1.1. From Lemma 3.1, we obtain that y; — L(z; T)
belongs to a compact set for all z € L%(Q) and se, by using Propositions 2.3 and 2.1,
we obtain that

(3.5) {Il ¢(2) 10y v(2), z € L*(Q)} is bounded in L(Q)
Thus
(36) Ki= swp | 9(2) o< .

zeL2(Q)

Obviously, u = u(z) satisfies
(3.7 | 4 @) < Ko
Therefore, if we define the operator

A:LX(Q) — P(L*(Q)
by
A(z) = {y satisfies (3.1), (3.2) for some u satisfying (3.7) },
we have seen that for each z € L2(Q), A(z) # 0. In order to apply Kakutani’s fixed
point theorem, we have to check that the next properties hold:

(i) There exists a compact subset U of L?(Q), such that for every z € L*(Q),
Az) CU.

(ii) For every z € L?(Q), A(z) is a convex, compact and nonempty subset of
LXQ).

(ili) A is upper hemicontinuous.
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The proof of these properties is as follows:

(i) From Proposition 2.4 we know that, there exists a bounded subset U of W such
that for every z € L*(Q), A(z) C U. Now, to see that we can choose U compact we
shall prove that the set

Y = {y satisfying (3.1) for some z € L*(Q) and u satisfying (3.7)}
is a relatively compact subset of L2(Q). But this is easy to prove by using that
(3.8) W C L*(Q) with compact embedding
(see Lions [12] or Simon [18]).

(ii) We have already seen that for every z € L*(Q), A(z) is a nonempty subset of
L*Q). Further A(z) is obviously convex, because B(yq, ) and {u € L*(Q) : satisfying
(3.7)} are convex sets. Then, we have to see that A(2) is a compact subset of L*(Q).
In (i) we have proved that A(z) C U with U compact. Let (y")» be & sequence of
elements of A(z) which converges in L?(Q) to y € U. We have to prove that y € A(z).
We know that there exist u™ € L?(Q) satisfying (3.7) such that

YP 4 (=AY + (=A) (g(2)y"™) = h + h(g(2)) +u"xo in @,

Iy" .
(39) i -—0,3—0,1,...,m—1 ?HE,
y*(0) = yo in Q,

|y™(T) — yal2 < €.

Now, by using that the controls u™ are uniformly bounded, we deduce that v — u
in the weak topology of L*(Q) and u satisfies (3.7) (see Proposition IIL.5 of Brezis
[5]). Then, using (3.9) and Proposition 2.4 we can see that (y"), converges to y in
the weak topology of W (and so, by (3.8), strongly in L?(Q)). Therefore, passing to
the limit in (3.9) we obtain

y+ (—A)™y + (=A)*(g(2)y) = h+ h(g(2)) + uxo In Q,
)7

g =01, m—1 on %,

s )

y(O) = Yo in Q.

Further, v® = y — y™ is solution of

VP 4 (=AY + (A (g(2)v") = (u—u")xo nQ,

YINg
(3.10) 6; =0,5=01,..,m—1 on L,
v™(0) =0 in

and satisfies v € W (see Proposition 2.4). Further, if we “multiply” in (3.10) by v"
and integrate, we obtain that

| v™(T) [|IZ2@y< k:/Q(u — uM)xov"dzdt — 0 asn — o0o.

Thus y™(T) converges to y(T') in the strong topology of L3(Q) and || y(T') —ya |25 €.
This prove that y € A(z) and concludes the proof of (ii).
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(iii) We must prove that for every z € L*(Q)
limsup 0(A(2,), k) < o(A(20), k), ¥ k € L*(Q).

LA(Q)

Zn — 20

We have seen in (i) that A(2) is a compact set, which implies that for every n € N
there exists y™ € A(z,) such that

o(A(z,), k) =/Qk(x,t)y"(x,t)dxdt.

Now, by (i), (¥™)n C U (compact set of L?(Q)). Then, there exists y € L%(Q) such
that (after extracting a subsequence) y™ — y in L%(Q). We shall prove that y € A(z).
We know that there exist u™ € L*(Q) satisfying (3.7) such that

U+ (A)™y" + (=AY (9(2n)y™) = b+ h(z) + u™xo n Q,

oy" .
(311) 81/7 :0,]20,1,...,771—1 01’12,
y™(0) =y in 0,

|y™(T) - yal2 < e.

Then there exists © € L?(Q) satisfying (3.7) such that 4™ — u in the weak topology
of L2(0). On the other hand, by using the smoothing effect of the parabolic linear
equation (in a similar way to the proof of (ii)) and that g € L*(R)NC(R), we deduce
that y satisfies (3.1) and (3.2) with z = 2z, for some u € L*(Q) satisfying (3.7), which
implies that y € A(zp). Then, for every k € L*(Q),

o(A(z), k) :A?k(x,t)y"(x,t)dxdt——»/Qk(:v,t)y(a:,t)d:udt

< sup [ k{z,t)g(z,t)dzdt = o(A2), k),

ﬂe/\(zo) Q
which proves that A is upper hemicontinuous and conclude the proof of (iii).

Finally, if we restrict A to K = conv(U) (the convex envelope of U), which is a
compact set of L2(Q), it satisfies the assumptions of Kakutani’s fixed point theorem.
Then, A has a fixed point ¥ € K. Further, by construction, there exists a control
u € L%(Q) satisfying (3.7) such that

v+ (A "y + (A (f(y) =h+uxo nQ,

y .
(3.12) 57 =0, i=0L..m-1 on %,
y(0) = yo in 0,
|y(T) — yal2 < e
Therefore, y is the solution that we were looking for. n

Remark 3.1. Several generalizations seem possible. For instance, the equation of
(1.1) could be replaced by other ones with a more general nonlinearity

k
Y+ (D) "y + D (-AVfily) = b+ vxw

=0
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or a more general lower order differential operator
ye+ (=A)"y + L(f(y)) = h + vXo,

with L suitable linear partial differential operator of degree lower than 2m. The key
point in those generalizations is that the unique continuation result of Lemma 2.1, for
the associated dual problem, remains true thanks to Theorem 3.2 of Saut-Scheurer
[17] and the rest of arguments of the proof of Theorem 1.1 apply.

4. Non-controllability for superlinear problems

In this section we assume k = 0. 'We shall prove a result of non-controllability for
a superlinear nonlinear term with @ C €.

Theorem 4.1. Let p > 1 and let y(t;u) = y € L*(0,T; H™(Q)) N C([0,T]; L*(Q)) o
function satisfying

o+ Ay + Py =ux i Q,
1 ¥(0) =wo in €,

associated to any “natural” boundary condition and with control u € L*(Q). Then
we can choose yg € L?(Q) and € > 0 such that

(4.1) | 9(T5 ) — ya 2> € for any u € L¥(Q).

In order to prove Theorem 4.1 we introduce, previously, some auxiliar functions.
Given R > 0 we define, on RY, the functions

£r(z) = (R* —|z|*)/R if |z| <R, Er(z)=0 if|z| >R
and
(4.2) dp(z) = R—|z| if |z| <R, dr(z) =0 if |z] > R.
Tt is clear that
(4.3) dr(z) < &r(z) < 2dr(z)
for all z € RV,
The following result was proved in Bernis 4].

Proposition 4.1. Let s > 2m and R > 0. Then, for each £ > 0 there ezist a constant
C depending only on N, m, s and € (thus independent of R ) such that the following
inequality holds for all y € H(RN):

((=A)"y, Szy)H;;"(RN)xH;n(RN) >(1-¢) /RN &3 D™y[Pdz — C/RN &5 2y da.

Remark 4.1. Since s > 2m, &5 € W2™°(RN). Hence &5 € CP(RY) (see e.g. Corol-
lary IX.18 of [5]) and &u € HM(RY) (see e.g. Note IX.4 of [5]).
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Corollary 4.1. Let s > 2m and R > 0 such that Bg C Q. Then, for each € > 0 there
ezist a constant C depending only on N, m, s and € (thus independent of R) such
that the following inequality holds for all y € H™(Q):

(=A)"y, &gy -m(@)xmp@ = (1 —€) /QSEID’"@/IZdw ~-C /Q &y dz.

Proof. Let 7 € H™(2) such that ¥ = y in Q (such 7 exists by standar results: see,
e.g., Chapter IX of Brezis [5]). Then, by Proposition 4.1, the inequality holds for 7,
but as B C §2 we obtain the result. [ ]

Theorem 4.2. Letp > 1, r=p+1, yo € L*() and u € L (Q). Then any solution
y € L"(Q) N L*(0,T; H™(Q)) of

¥+ (—A) "y + [y ly =u in D'(Q),
(44) { y(0) = 9o on £,

with any “natural” boundary condition, satisfies the local estimate

su x,t 2da:+/ D™y|? + |y|")dzdt
sup [ y(z,t) BRX(O,T)(I yI*+ 1yl

<K (1 + |u|r,dxdt+/ yéd:r)
Br,

if Br, C Q and 0 < R < Ry. Moreover, the constant K depends only on N, m, p,
R, Ry and T.

Proof of Theorem 4.2. We take X, = L"(Q) N L2(0,T; Hy*(€2). Then the equation
of (4.4) is satisfied in X! = L"(Q) + L*(0,T; H-™(f2)). Then, if s > 2m, we can
multiply (4.4) by £§y with the duality product (-,-)x:xx, and we obtain

Bg, x(0,T)

1 , s
2 /B i Ey(z, T)?dz + ((—A)™Y, E5Y) 120,17, H-m(9))x L2(0.T:HF ()
+ (Y'Y, €29) 1 (@) x L7 (@)

1 8
2 /BR Ehyo(@)’de + (u, E2Y) 1 @xer @)

Now, from Corollary 4.1 it follows that

1
> [ &w@ TV [ (D™l + lyl")dedt
3 ), @ TPdat [ (D™ + [yl

(4.5)
< 3 2 s—2m,, 2
_C/BRERyo(x) dz+C £ yd:cdt+C/B

puydzdt.
Brx(07) wxom Y
By (4.2) and (4.3) we can replace in (4.5) {r(z) by R— |z] (modifying the constants).
Further, writing s —2m = 2s/r+ (s(r —2)/r) —2m, we can apply Hélder’s or Young’s
inequality with exponents ¢ = r/2 and ¢’ = r/r — 2 and we obtain

R— 5—2m 2d dt
/BRX(O,T; )= 2m 2 d

< R [a])*lyl"dudt + K (=,0) | R — |a|)*dadt
<ef  omBolbidd ke [ (R o)
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with 5
mr
K =
(67 q) q’(qs)ql/‘l r— 2

Hence, if we choose s > v — 1, the last integral is finite and equal to CR**N=7. On
the other hand, we can apply again Young’s inequality and we have

R — Suydxdt
/. oy (B ez

< R~ [o)ly[ dsdt + k(e,7) [ R — |o})*|u|" ddt.
<ef  om B lalldsdirken) [ (R = [ol)lulda

and vy =

R i )
Thus, by changing the constants, we deduce that

5 ) R=laly@ e+ [ (R fal) (D7 4yl )deds
Brx(0 T)

< _ s 2 5+ N —vy _ S, 17" )
_o( /B (B~ lal)wola)da + RN [ (R = o]l dxdt)

Finally, by replacing R by R; and by taking into account that Ry —|z| > R; — R and
— |z| € Ry if |z| < R we deduce the result with
Rl CR-;+N*'Y }

Bm-R (m-Ry -

K = max{c

Proof of Theorem 4.1. It is a trivial consequence of Theorem 4.2 since, if R; satisfies
Bg, € Q\w, then

I y(u; T) 720y < K (14 || wo |22y Vu € L (Q).

Therefore, taking y; with || ya [|z2(e) large enough, we obtain (4.1) for &€ > 0 small
enough. |
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1. Introduction

Consider the reaction—diffusion distributed parameter system

oylt,x i
) 205 - Ay )+ oyt 0), Vot ) Hulte) (20,2 €9)
in a domain Q C R™ with boundary I', a boundary condition § acting on I'. Control
problems for (1.1) may include constraints on the state y(t, z) and the gradient, either
pointwise

(1.2) y(t,z) € M, CR, Vy(t,z) e M, CR™ (0<t<?)
or of integral type. Target conditions can be also pointwise,
(1.3) y(t,z) €Y, CR, Vy(t,z)eY, CR™

or of integral type, the control interval [0,] fixed or variable. Control constraints
may include

(1.4) u(t,z) EUCR (0<t<F)

and (when U is unbounded) summability conditions in the cylinder (0,) x Q.

" Interest in optimal control problems with unbounded controls is more than aca-
demic. When the control set is unbounded, Pontryagin’s maximum principle not only
gives optimal controls as solutions of independent maximization problems for each
time ¢t but includes the statement that the maximum is finite — sometimes a very
potent pronouncement. (For ingenious ways of putting this to use in finite dimen-
sional systems see [8]). As an infinite dimensional possibility of obvious interest we
mention that of setting up solutions of the Navier-Stokes equations as solutions of

preceding Page Blank
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minimization problems involving purely differential equations (i.e. relegating nonlo-
cal operators to the cost functional). This can be done in several ways, and in all
these problems the controls are naturally unbounded.

Except for particular cases (such as the linear-quadratic problem) interest in Pon-
tryagin’s principle for unbounded control sets seems of recent date. Raymond and
Zidani treat in [9] and [10] boundary control problems for parabolic equations. Un-
bounded control sets were considered in [6] for distributed parameter systems with
smooth nonlinearities in reflexive spaces. These conditions fit systems described by
nonlinear wave equations but would force unreasonable assumptions on a system
like (1.1) (for instance, they would not cover such nonlinearities as ¢(y) = —y° or
#(y, Vy) = (y - V)y. We indicate in this paper how to handle abstract parabolic sys-
tems, with applications to reaction-diffusion equations and the Navier-Stokes equa-
tions.

2. Abstract differential equations
We study (1.1) via the abstract model

(2.1) y'(t) = Ay(t) + f(¢,y()) + Bu(t),  y(0) =,

The operator A in (1.1) generates a bounded analytic semigroup S(t) in a reflexive
separable Banach space E (for a nonreflexive setup see §5) and 0 € p(A). The control
space for (2.1) is F = X* (X a separable Banach space) and B : X* — E is a
bounded operator with B* : E* — X.

The assumptions on A allow construction of the fractional powers (—A)%; (—A4)*
is bounded for a < 0. For any a, (—A)*S(t) is a bounded operator, continuous in
(E,E) for t > 0 ((E, F) = {linear bounded operators from a Banach space £ into
the Banach space F equipped with the operator norm}) and

(2.2) 1(—A)ES@)|| < Cat®e™ (t>0, 0< a< 1),

If @ > 0 we set B, = D((—A)*) equipped with the norm |y|g, = [[(—A)*y|.
Invertibility of (—A)* implies that E, is a Banach space. For o < 0, E, is the
completion of E with respect to the norm | - ||g,. Since E is reflexive, A* is the
infinitesimal generator of the strongly continuous semigroup S*(t) = S(t)* and we
define the spaces (E*), using the fractional powers (—A*)* = ((—A)*)* in the same
way the E, are defined from the fractional powers (—A)®. We have

(2-3) (_A)—’YEa = Loty (_A*)_’Y(E*)a = (E*)a+7

for v > 0 and —0o0 < & < o0 [5].
We say that the function f : [0,7] x E, — E_, (a,p > 0, a + p < 1) satisfies
Hypothesis D, , if the Fréchet derivative 9, f(t,y) € (Ea, E_,) exists and

(4) f(t,y) is continuous in y € E, for ¢ fixed and strongly measurable in ¢ for y

fixed,
(i) By f(t,y)¢ is continuous in y € E, for t and ¢ € E, fixed and strongly measur-
able in ¢ for y, ¢ fixed,
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(43i) For every ¢ > 0 there exist constants K(c), L(c) such that

(2.4)
17 )le-, < K(c), 105f )l (a5 < L) (0 <t < T, |lyllza < ©)-

Controls u(-) in (2.1) are elements of L2 (0,T;X*) with p > 1/(1 — «), where
LP(0,T; X*) is the space of all X —weakly measurable X*—valued functions u(-),
equipped with the usual L? norm; this space is the dual of L4(0,T; X) (1/p+1/q¢ =1)
and does not in general coincide with LP(0,T; X*) (except when X* is separable).
The control set U is an arbitrary subset of X*, and the admissible control space
C,a(0,T; U) consists of all u(-) € LE (0, T; X*) such that u(t) € U a.e.

Solutions of (2.1) are y(t) = (—A)~*n(t), where n(t) solves the integral equation

n) = (~A7SOC+ [ (~AS(E = 7)) (7, (~A) *n(r)r

(2.5) t
+ /0 (—A)*S(t — 7)Bu(r)dr.

The assumptions guarantee local existence (see [5] for details). Note that if z € E*
we have (z, Bg(t)) = (B*z, g(t)), so that Bu(-) is E*—weakly measurable; since E is
separable, Bu(-) is strongly measurable.

We consider optimal control problems for (2.1) in a fixed or variable interval 0 <
t < t. State and target conditions are given by

(2.6) yt)eM (0<t<t), y(t,u) €Y,

with the state constraint set M C E, and the target set Y C E, closed in E,. The
cost functional is

2.7) wlt;w) = [ folrylr),ur)dr

where fo : [0,7] x E, x U — R satisfies Hypothesis DJ; this means the Fréchet
derivative 0, fo(t,y,u) € (Eq)* exists and

(49) For every t, u fixed fo(t,y,u) and 8, fo(t,y,u) are continuous in y € E,,

(iig) For every u(-) € Coq(0,T;U) and y € E, fixed t — fo(t,y,u(t)) and t —
0y fo(t,y,u(t)) are strongly measurable in their home spaces,

(i1ig) For every u(-) € Coq(0,T;U) there exist constants Ko(c), Lo(c) such that

|fot,y, u(t))] < Ko(e)llu()I”,  118,fo(t, v, u®))ll., < Lo(e)l[u(®)[”

(28) (0<t<Tlyls < o).

3. The minimum principle

For definiteness, we limit ourselves to the model (2.1) under Hypothesis DY. The
admissible control space C,4(0,T;U) is equipped with the distance

(3-1) d(u(-),v(-) = [{t € [0, T} u(t) # v()},

(| - | = Lebesgue measure). In general, C,q(0,T;U) is not complete under d if the
control set U is unbounded; for instance, consider U a cone # {0} in X*, u € U,



132 Parabolic Equations with State Constraints and Unbounded Control Sets

Un(t) = t~1xn(t)u, where x,(-) is the characteristic function of [1/n, T]. This is the
key difficulty precluding direct application of the methods in [5].
The dual space (E,)* is given by (E,)* = (E*)_o with pairing

(3.2) (2,9 (B)—axEa = ((—A*) %2, (=A)*Y) E*xE-

The proof follows from (2.3); see [5, Lemma 4.4] for details of a more general result
(actually needed in §5).

Given any Banach space E, the space (0, T; E*) consists of all countable additive
bounded E*—valued measures p(ds) defined in the field generated by the closed
sets of [0,T]; this space is the dual of C(0,T; E), the duality given by (u,y).
JT(u(ds), y(s)). Since (E,)* = (E*)_o we have £(0,T;(E*)-o) = 5(0,T; (Ea)*) =
C(0,T; E,)*. See [1] for further details on vector—valued measures.

Let F be a Banach space. We call a sequence {Q,}, @Qn € F precompact if every
sequence {¢.}, ¢ € Q» has a convergent subsequence. A closed set Z C F'is T— full
at T € Z if, for every sequence {z"} C Z such that ™ — Z there exists p > 0 and a
precompact sequence {Q,}, @, C F such that the sets Tz(z™) N B(0, p) + Qn contain
a common ball B(0,¢) for ny large enough (Tz(z) is the Clarke tangent cone to Z
at ). If the condition above is satisfied with @, = {0}, Z is strongly T— full at Z.
Finally, Z is T—full (resp. strongly T—full) if it is T—full (resp. strongly 7'— full) at
every & € Z. Examples of strongly T—full sets are closed convex sets with nonempty
interior; for other examples see [6].

Given a sequence {Z,} of subsets of F', liminf,, ., Z, is the set ofall z = lim,,_, 2n
with z, € Z,. If Z C F, Z~ C F* is the polar cone of all 2* € F* with (z*,z) <0
(2 € Z). Finally, we define

M(f) = {y(:) € C(0, Ey); y(t) e M (0 <t <)}

and assume that M(f) is strongly T'—full in C(0,%; E,) and that Y is strongly T—full
in E,.
Theorem 3.1 below for (2.1) gives necessary conditions for optimality of a control
a(-). We assume that the set of Lebesgue points of all functions fo(-, y(:,%),v) (v € U)
has full measure in [0, 77].

Theorem 3.1. Let @(-) € Coy(0,5;U) be an optimal control in 0 < t < ¢. Then
there exists a double sequence {(§2(-),7%)} € M(#) x Y C C(O £ Eo) x E, such
that (G(-),9%) — (y(-,4),y(,a)) asn — oo form = 1,2,... and a multiplier
(20, 1, 2) € R x 5(0,%; (Ea)*) X (Ea)*; (20, 1, 2) # 0, satisfying

<
X

(3.3) 23>0, ue(lﬂigf ligg}fTM({)(gﬁl(-)))_, ze<1;nrgi£f ligglny(g;)) :
and such that

(3'4) zO{fO(s’ y(s,ﬂ),v)—fo(s, y(s,ﬂ),ﬂ(s))}—}—(B*Z(s),v—ﬂ(s)) >0 (U € U)
a.e. in 0 <t <%, where 2(s) is the solution of

dz(s) = — {A* + 0, (s,y(s,%))" }2(s)ds

(3.5) — 200, fo(s, y(s, @), u(s))ds — p(ds), z(t) =z
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By definition, z(s) = (—A*)™*0(s), where
0(s) = Rao(t,8)"((—A)7%)"2
+ [ Rag(o,9)(=4)2)"u(do) = () + 5(s),
and the operator R, (%, s) is defined by the integral equation
Rap(t, 8)¢ = (—A)*S(t — s)¢
+ [ (~A)S(t =), 7, (7, D) (~A) " Ra(r, G-

(3.6)

(3.7)

(the operator (—A)~*R, o(t, 8) is the propagator or solution operator of the variational
equation ¢'(t) = {A + 8,f(t,y(t, ) }£(¢)). Finally, 4(t) in (3.6) is understood as
follows: for each s, T;(s) is the only element of E* satisfying

(38 (0,5:(5)) = [ (Raolo, )y, (—A)) (o)) (v € B).
Using the integral equation (3.7) we obtain

(3.9) |Rao(t, 8)|(me) SCE—5)"% (0<s<t<t)

so that

(310)  [5:(s)]lz < Cwals) C/(t—a) o|lull(do) (0<s<t<F)

Integrating in 0 < s < ¥ and using Tonelli’s theorem we deduce that wq(-) € L*(0,%).
It follows from its definition that ©(-) is F—weakly measurable, thus is strongly
measurable by separability.

Here is the strategy for the proof. Let

(3.11) Cog(0,T; U, W) = {u(-) € Coa(0,T; U); |u(o) — a(0)|| < m}
for m = 1,2,.... This subspace is complete in the distance (3.1); moreover it is
patch complete in the sense of [4], [5]: if u(*),v(-) € Cua(0,T;U, @), and e C [0, 7]

is measurable, the control equal to u(t) in e and to v(t) outside of e belongs to
Cq(0,T; U, @), Finally, it follows from (2.4) and (2.8) that

(3.12)  [fE I +1Bu®)l < K(o) + C(la®)l +m), 18,f¢ )]l < L(c)

(3.13) |folt,y, u(t)| < Ko()|@(t) +mllP, 10, fo(t, y, u(®))| < Lo(c) [u(t) +m|l”

all bounds valid for 0 < t < T, |||z, < c independently of u(-) € Coq(0,T;U, @W).
Taking into account that if @(-) is optimal in C,q(0,¢;U) it is optimal in any sub-
space that hosts it, in particular in C,4(0,%; U, @), we can apply [5, Theorem 6.2]
and deduce that for each m there exists a sequence {(§%(-),7%)} C M(t) x Y
with (72(-),9%) — (y(,4),y(,%)) as n — oo and a multiplier (20m, tm,2m) €
R x Z(0,%; (Eo)*) X (Ea)*, (Zoms fim, 2m) # 0 with

(310) 2020, pme (it Tua@H0)) € (Il () |
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and such that
Zom, /Ot { folo,y(0,m),0(0)) = folo,y(o, a),(s)) }do
+ /Ot— <B*2m(0),v(o) - ﬁ(a)>d0 >0
for every v(-) € Cug(0,% U; @), T where Z,(s) is the solution of
Az (s) = —{A* + 8,f(s,y(s,@))"}Zm(s)ds
— 200, fo(s,y(5, @), (s))ds — pim(ds),  2(F) = zm.

It is then clear that, in order to prove Theorem 3.1 it is enough to show: (a) if
necessary passing to a subsequence

(3'17) (20m s tom Zm) = (%0, 1, z) #0,

(R x C(0,%; E,) x E,)—weakly in R x £(0,7; (Ea)*) x (Ea)*, and (b) If Z(s) (resp.
Zm(8)) is the solution of (3.5) (resp. (3.16)) then

(3.18) ' Zm() — 2()

L>(0,%; E)—weakly in L*(0,%; E*). In fact, if both (3.17) and (3.18) are satisfied, we
take limits in (3.15) and obtain

2 /O’_ { folo,y(0,8),v(0) — folo,y(o, a),a(s)) }do

7 + /OE<B*2(0'),'U(0') — ’1_1(0')>d0 >0

for all v(-) € Cou(0,% U) with v(o) — (o) bounded, and here is how we obtain the
pointwise version (3.4) of the maximum principle. Let m = 1,2,..., and define
dn = {0 € [0,];m < |a(o)| £ m+ 1}, xm the characteristic function of dpm,
Um(0) = Xm(0)@(0), em the set of all left Lebesgue points of both functions xm(o)
and @,(0) in [0,%]; e, has full measure in [0,%], so that e, N dy, has full measure in
d,. If s € e, N d,y, then there exists a set e, (k) C [s — h, s] N dy, such that

(3.15)

(3.16)

(3.19)

1 1 L
(320)  plen(®Wl =1 7 /em(h) (o) — a(s)|do — 0 ash—0+.

The set U (e, N dyy,) is total in [0,£], thus so s its intersection e with the set of left
Lebesgue points of the following functions: (¢) 2(:), (i4) fo(-,y(-, @), (), (i) all
functions fo(-, y(,@),v). Take s € e and v € U, find m so that s € e, Nd,, and stick
in (3.19) the function v(a) = vXm(0)+(1—Xm(0))&(0). Then v(0)~u(0) = vVXm(o)—
Xm(0)@(c) is bounded. We take limits using (3.20) and the diverse assumptions on
Lebesgue points, and obtain (3.4).

tStrictly speaking, Theorem 6.2 is proved in [5] under the assumption that the bounds in (3.12)
and (3.13) are uniform, that is, that the functions on the left are bounded by constants independent
of the controls. The proof extends almost without changes to this more general situation due to
the fact that (3.12) and (3.13) are independent of the particular control u() € Coa(0, T;U, @)m-
Boundedness of v(o) — @i(c) makes it possible the interchange in the order of integration at the end
of Theorem 6.2. '
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Back to (3.17) and (3.18). The required convergence in (3.17) can be attained
invoking Alaoglu’s Theorem. To show that the limit is nonzero note that, since
(20m» ms Zm) 7 0 we may assume that

(3:21) |20m|” + ”Hm”%(o,t‘;(Ea)*) + ”zm”%Ea)* =1

If zom — 29 # O there is nothing to prove. If 2y = 0 we may erase 2, from the left
side of (3.21) replacing “ =" by “ — ”. We obtain from (3.14) that

(3'22) <:“ma _yM(‘»a,c + (zma —ym>a =0
for (ym(-), ym) € Apm = M, X Y, where
(3.23) Mp, = hﬂ}ngM(D(ﬂfn()) < C(Oaﬂ Ey), YVm= hﬁngY(me) C Eo,

where (-, -)q indicates the duality of E, and (E*)_, and (-, -).o the duality of
C(0,% E,) and X(0,%; (E*)_s). The assumptions on M(f) and Y and [6, Lemma 3.6]
guarantee that the M,, X ), contain a common ball in E, for m large enough, so
the fact that (u, z) # 0 follows from the result below ([2, Lemma 2.5]).

Lemma 3.2. Let F be a Banach space, {A,,} a sequence of subsets of F, {zn} a
sequence in F* such that

0<CS ”zm“F* SC<OO, <Zm»y>2"‘5m_>0 (yEAm)'

Assume there exists a precompact sequence {Qn} in F such that the sets conv(A,) +
Qm contain a common ball. (conv = closed conver hull). Then every F—weakly
convergent subsequence of {zm} has a nonzero limit.

It only remains to show (3.18). Writing T, (s) = Tmn(S) + Oms(s) as in (3.6), the
statement is obvious for the homogeneous parts; in fact,

Tmn(8) = vp(s) 0< s <t

E— weakly in E*, so that (3.18) follows from the dominated convergence theorem.
To show (3.18) for U,;(s) we use (3.8). Let v, (do) = ((—A)™%)*um(do), v(do) =
((—A4)~*)*u(do). Then v, — v C(0,t; E)—weakly in 3(0,¢; E*). Givenn =1,2,...
define an operator R, ,.(t,s) in the square [0,2] X [0,2] by Rg pn(t,s) = Ra,(t,s) in
t—8 > 1/n, Rapn(t,s) =0int < s, and extend R, ;. (%, s) linearly to 0 < t—s < 1/n,
so that it shares the bound (3.9). Define o7(s) with v(ds) in the same way as 7;(s)
but using R, pn(t,s) instead of Ry ,(t,s); likewise, define ¥7%;(s) using vn(ds) and
R pn(t,s). We have

(3:24)  |vi(s) — T (s)l

B < Cpn(S) =C

min(Z,s+1/n) o
/ (0 —s)vil(do) -

By Tonelli’s theorem,

g

825) [/ nlehds< [ Wol@o) [ (o =) eds=p=(3)" [ @)

so that ||pn(-}||z107) — 0 as n — oo. Since {vm(ds)} is bounded in X(0,t; E*) we
obtain in the same way that

(3.26) 1Omi(s) = Uns($)l| B+ < Comn(s)
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for each m, with ||pmn(-)||lp1 07y — 0 as m — oo, uniformly with respect to m. Pick
f(-) € L*(0,t; E) and write

(3.27)  (vils) — Tmi(s), £(5))
= (Bi(s) — 0(s), £(5)) + (T () — Tpa(5), £(5)) + (Ua(5) — Tuna(5), £ (5)) -

We have that |(7;(s) — 72(s), f(8))| < ||f||lze=(0 ) pn(s) With a similar estimate for
(o2,(8) — Tmi(8), f(5))], thus the first and third terms on the right of (3.27) are

disposed of. For the middle term we note that

/0 ' (t7(s) — (o), £ () )ds = [ E< / " Reon(o, 8)f(s)ds, (v — Vm)(da)> ,

hence it is enough to show that the function in the left side of the angled brackets
inside the integral on the right is continuous. This is obvious and left to the reader.

The first relation (3.3) is plain; the third relation follows taking limits in (zm, Ym) <
0 (ym € Ty (§%)), and the second results in the same way.

4. The point target case

There is a version of the maximum principle for (2.1) [5, Theorem 9.1] that covers
point targets. It requires that f : [0,T} x E, — Es (a,6 > 0) and that (—A)°f(t,y)
satisfy Hypothesis D, 0. The proof requires again M C E, closed and M(t) T—tfull
in C(0,% E,), but we only need Y to be a closed subset of £ = D(A), thus, in
particular we may handle the point target condition y(f,u) = § € D(A). The control
space in the present application is C(0,%; U, @), and the multiplier (zom, oy Zm)
belongs to Rx £(0,; (E.)*) x (E*)!,, where (E*)L, is the subspace of (E*)_; = (£1)"
determined by the condition

1
(4.1) /0 1BS(t)* 2] xdt < oo ,

and we have

@2) 220, e (ImniTa@0))  me (I @)

where, for each m, {(7(), %)} € M(t) x ¥ with (§,(-), 7%) — (- 1), y(t, 1)) as
n — oo. See [6] on extension of the adjoint semigroup S(t)* to the spaces (E£*)_
and other details.! The costate is defined as in (3.6) but the homogeneous term
i8 Tpmn(s) = ((=A)"2Ryp(f, ;%)) (—A)™)* 2. The minimum principle in integral
form is again (3.15),

(13) Zom /ot_ {fo(o,9(0,8),9(0)) — fo(o, (o, B), u(s)) }do
+ /Ot <B*Zm(0'),’u(g) _’171(0')>d0' >0

t Again, Theorem 9.1 in [5] is proved assuming that the bounds in (3.12) and (3.13) are uniform
and the controls are bounded. The proof works under (3.12) and (3.13) as long as v(o) — 4(o) is
bounded.
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for every v(-) € Cyq(0,%; U; @)m and

(4.4) / ' S(F - 0)Bu(o)do € D(A) .

0

(note that, since y(¢,@) € Y C D(A), 4(-) itself satisfies (4.3)). The conditions above
do not guarantee that the multiplier is nonzero. A sufficient condition comes below.
Given v(-) € Cpq(0,%; U), denote by £(¢, T, v) the solution &(t) of

(4.5) §t) ={A+0,f(t,y(t,u)}(t) + B(v(t) —a(t)), £(0)=0
and assume the reachable space R(t,U; @)y = {£(%, 4, v);v € C(0,8; U, @), } satisfies

(4.6) R(t,U;u); 2 Bi(e),
Bj(€) aball of radius € > 0 in E;. Then
(47) (ZOma :U"mv Zm) 7& O

When controls u(-) are bounded, a sufficient condition for (4.6) is that U contain a
ball of positive radius around some control v(-) satisfying (4.4). In the general case,
it is enough to require that the set

7
a9 [ 50-0)Blo) - alo)as o) € Cul0EVD)
contain a ball By(e) C Ej. This does not seem like a good condition to verify since
it contains the unknown optimal control, but it can be checked easily in many cases
without any information on #; one example is X* = L*(Q), U defined by the condi-
tion u(z) > 0 a.e. (see Section 6).

We shall take limits in (4.3) in the same way as in (3.15), and we need to show
(3.17) and (3.18). Note that, this time, (Zom, im, Zm) € R X E(0,%; (E*)_a) X (E*)_1
and convergence in (3.17) is (R x E, x Ej)—weak convergence.

Inequality (4.3) is equivalent to

(49) Zomgo(f, U, U) + (/‘Lma S(Uﬂ'a v))a,c + (Zmag(f, U, U)>1 > 0,

for all v(-) € C,q(0,%; U, %), with £(£,4,v) € E;p (the latter condition equivalent to
(4.4)), where

b(t3,0) = [ (0,5olr, (), 8(7)), €07, 8,0))_dr
+ [ {508, 0(0) = ol p(r, @), ()

(see [5] for a proof of the equivalence of (4.3) and (4.9)). Since (2om, fim, 2m) # 0 We
may assume

(4.10)

(4.11) Zom + 302,80y + Zmlliey- =1 (m=1,2,...).

Select a subsequence of the sequence {(2om, fim, #m)} such that the limit (3.17) exists
(R x Ey x Ey)—weakly. If zp,, — 2p # 0, the limit is nonzero and there is nothing
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to prove. If zp = 0, we combine (4.2) with (4.9) keeping v(-) in Caa(0,%;U, @)1 C
C,4(0,%; U, @) The result is

(412) <.U’m1§('717’7 ’U) - ym(')>a,c + (vag(ﬂ ’(7,, ’U) - y’m>1 Z _6m — 0

for (Ym (), ¥m) € Mum X Vi, My, and Yy, given by (3.23), the second liminf (and
tangent cones) computed in the norm of E;. The expression on the right of (4.12)
is justified by the fact that |[u(c) — @(o)|| < 1, so that &(¢,%,v), hence &o(t, G, ),
is bounded independently of v(-) (take a look at (4.5) and (4.10)). Accordingly, to
apply Lemma 3.2 it is enough to show that the sets A, defined by

(4'13) (f(-,ﬁ,’v) - ym('): E(E, ’l_l,, U) - ym) g C(O,LT; Ea) X El

(where v(-) € Coa(0,% U, u)1 and we may take y, = 0) contain a common ball in
C(0,% E,) x Ey. The first coordinate is covered by y,(-) alone on the strength of the
assumptions on M(%) and of the fact that £(-, %, v) is bounded in C(0,; E,); for the
second, we use (4.6). For reference, we state the final result:

Theorem 4.1. Let i(-) € Coq(0,%;U) be an optimal control. Then there exists a

double sequence {(F2(-), ym)} CM(t)xY C C(0,%; E,) X Ey such that (§(-), Tm) —

(y(-,@),y(f, %) in C(0,5; Es) x By asn — oo and a multiplier (zo, p,2) € R X
2(0,%; (E*)—a) X (E*)-1 (zo,p, z) # 0, satisfying

(@14) 20, e (lminf lmint T @50)) 2 (Uminf limint T (57)
and

(4.15) 20{ fols, y(s, @), v)— fo(s, y(s, ), a(s)) }+ (B"%(s),v—1(s)) 20 (v € U)
a. e. in 0 <t <1, where Z(s) is the solution of (3.5).

Remark 4.2. The integral form (3.19) of the maximum principle guarantees that
z € (E*)',; the argument is the same in [5, Theorem 9.1].

5. Nonreflexive spaces

The setup in §4 covers reaction—diffusion equations and the Navier—Stokes equa-
tions in LP spaces 1 < p < oo (see §6); however, there is an advantage in treating
parabolic equations in spaces C(Q) of continuous functions (see §6), thus it is con-
venient to extend the results in §4 to nonreflexive spaces. This can be done with
minor changes; we only need to assume that F is separable. The assumptions on the
semigroup S(t) and its infinitesimal generator A are the same and the spaces E, are
defined in the same way. On the other hand, A* may not be a semigroup generator
(or even densely defined) thus the spaces (E*), are defined using ((—A)*)* rather
than (—A*)*. If D(A*) is not dense in E*, it is no longer true that (Eq)* = (E*)-a
however, the dual is algebraically and metrically isomorphic under (3.2) to a larger
space (E,)* with (E*)_q — (Ea)* — (E*)(a+e) for all € > 0. Some of the functions
of the dual E* are taken over by the Phillips dual E® = closure of D(A*) in E*; the
adjoint semigroup S(t)*, restricted to E® is called S®(t) and is strongly continuous;
the space E® is maximal with respect to this property. We name A® the infinitesimal
generator of $®(t). The same considerations applied to the semigroup S®(¢) produce
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(E®)®, (A®)® and (S(t)®)®. We assume that E is @—reflezive in the sense that
(E®)® = E; this implies that (A®)® = A and (S(¢)®)® = S(t). Hypothesis D, , is
formulated in the same way, but in the case p = 0, f(¢,y) is allowed to take values
in (E®)* D E.

The statement and proof of the minimum principle are the same; the multiplier
(20, 14, 2) is in R X 33(0,7; (E,)*) X (Ea)* (R x X(0,%; (Ea)*) x (E1)* for point targets).
We still have ((—A)™*)*(F,)* = E*, so that the costate Z(s) is defined in the same
way as in the reflexive case; due to the smoothing properties of the semigroup, Z(s)
takes values in E® rather than E*.

6. Applications

Theorems 3.1 and 4.1 for reflexive separable FE can be applied to the controlled
Navier—Stokes equations

(6.1) Y/(8) = A4y(t) + B((v - V)y + Lu(t)) -

The space is E = XP(Q)™ = closure in LP(Q)™ of all divergence-free m—vectors
yv(z) = (11(2),...,ym(z)); P, is the projection of LP(Q)™ into XP(Q)™ and A, is
the Stokes operator A, = P,A,, A, the m-vector Laplacian in LP(Q)™. The control
space is a (possibly unbounded) subset of L™(0,T; L"(2)™), p < r (for r = oo we
take L(0, T'; L®(2)™)) and I, is the embedding operator from L™(£2)™ into LP(Q2)™.
Hypothesis D? is satisfied for o < 1 if p > m and 1/2 + m/2p < «; in Theorem
3.1 one may take r > p arbitrary, in particular » = oo. On the other hand, the
assumptions in Theorem 4.1 hold for p large enough if 1/2 < @ < 1,6 < &« —1/2); in
this case, r = p. The treatment admits state constraints of the form

(6.2) Sy(t,z) e Mg CRF (0<t<fze),

(Sy(z) = IEnu(x)0ye(z) + En;(2)y;(x) a first order differential operator with
k—vector coefficients in C(Q)*) and target conditions of the same type. Nonlin-
earities more general than the one in (6.1) are tractable. See [7] for details.

The main application in nonreflexive spaces is to uniformly elliptic partial differ-
ential operators A(8) coupled with a boundary condition § in a bounded domain
Q € R™ with boundary I'. Here, E = C(Q) = {all continuous functions in Q}
equipped with the supremum norm; for the Dirichlet boundary condition the space is
the subspace Co(f2) of C(€2) determined by y(z) = 0 (z € I'). Assuming smoothness
of the coefficients, the domain and the nonlinearity f(¢,y)(z) = é(¢, z,y(z), Vy())
all results apply with @ > 1/2, and state and target constraints of the form (6.2) are
tractable. See [5] for further details.
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1. Introduction

During the last years, controllability for deterministic distributed parameter sys-
tems has been intensively studied. In particular, it is known that the heat equation
and the Stokes system with control concentrated in an arbitrary subdomain are ap-
proximately controllable (see [11]; see also [5]).

However, the analysis of the controllability for stochastic partial differential equa-
tions seems to remain an almost open field of research. The unique works we know
on the subject are [3] and [15].

In this paper, we present some approximate and exact-to-zero controllability re-
sults for a class of linear stochastic partial differential systems. This includes, as a
particular case, a stochastic heat equation of the form

Oy —Ay=1pov+ B(t)uy in Q=Dx(0,7) P—as,
y=0 on ¥=98Dx (0,T) P—as,
y(0) =1y in D P-as,

where the control is v. Here, @ and D are bounded open sets in RN with O C D, 1p
is the characteristic function of the set @ and 1, = d;w; is a Gaussian random field,
white noise in time.

Roughly speaking, we are going to prove that, for general yo, yq and B, one can
obtain final states y(T") arbitrarily close to y4 in quadratic mean by choosing v ap-
propriately (an approximate controllability result). We will also prove that, if B is
not random and in some sense small, then one can also choose v such that y(T) =0
(a null-controllability result).

Partially supported by D.G.I.C.Y.T. (Spain), Proyecto PB95-1242.



142 Remarks on the Controllability of Some Stochastic Partial Differential Equations

We will also study questions of the same kind for Stokes and (more generally)
quasi-Stokes stochastic systems '

Bry; — Ay — 8i (ai(@)y;) + cij(z)yi + 11 = lov; + B;(¢)
ajyj = 0,
(1.1) y; =0 on X,
yi(0)=yy; in D
(1 < 7 < N), where the usual summation convention is assumed.
This work is a continuation of [15]. An extended version, where other more general
problems will be considered, will appear in the next future.

2. Approximate controllability results

Assume a bounded and connected open set D C RY with regular boundary 8D,
a nonempty open subset O C D, a positive number T and a complete probability
space {§2, F, P} are given.

We will use the following notation: H = L?(D), V = H(D), |.| and (.,.) are
resp. the usual norm and scalar product in H. If X is a Banach space and f €
LY, F; X), we denote by Ef the expectation of f:

Ef=/nf(w)dP(w).

Also, assume that a separable Hilbert space K and a Wiener process w; on {Q,F,P}
with values in K are given. This means that

wy=3 Bre, Vt>0,
k=1

where the 8¢ are mutually independent real Wiener processes satisfying
k)2 —
(2.1) E(F) =M, D <+oo
k=1

and {e;} is an orthonormal basis in K (for the definition of a real Wiener process, see
for example [1]). Notice that, in particular, w, has Hélder-continuous sample paths.

In the sequel, we put F; = o(w,, 0 < s <t) (the o-algebra spanned by w; for
0 < s < t). Obviously, {F;} is an increasing family of sub o-algebras of F and,
among other things, one has:

(2.2) .’Ft:a(U ]—'s) Vit > 0.

s<t

For any f € L*(Q, F; H), we denote by E[f]|F;] the conditional expectation of f
with respect to F;, i.e. the unique element in L*($2, F; H) such that

/AE[f|]-'t]dP=/AfdP VAe F,

(cf. [14] for the main properties of the conditional expectation).
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Let X be a Banach space. We denote by I2(0,7; X) the space formed by all
stochastic processes ® € L*Q x (0,T),dP ® dt; X) which are Fi-adapted a.e. in
(0,T), i.e. such that

®(t) is Fi-measurable for almost all ¢ € (0,T)

(in the case X = L(K; H), measurability will mean strong measurability). Then,
I?(0,T; X) is a closed subspace of L?(Q x (0,T),dP ® dt; X).
Assume that a stochastic process B is given, with

(2.3) B e I*(0,T; L(K; H)).

Then the stochastic integral of B with respect to w; is defined by the formula
t e 1
/ B(s)dw, =3 /0 B(s)er g Vtelo,T).
0 k=1

Here, the convergence of the series is understood in the sense of L*(Q, F; H). The
stochastic integrals in the right side are defined by the equalities

([ B@exdst,h) = [[(Bls)ewhydst  VheH,

where the latter are usual Ito stochastic integrals with respect to the real-valued
processes (3F (see [1]).
Assume we are given an arbitrary but fixed initial state

(2.4) Yo H

and set A = A (the usual Laplace operator). For each v € I?(0,T; H), there exists
exactly one solution y, to the problem

yo € I2(0,T; V) N LA(; C°([0, T7; H)),
(25) { wo(t) = o + /Ot{Ayv(s)+10v(s)}ds+ /OtB(s) dw, Vie[0,T]

In (2.5), the equalities hold P —a.s in V'. Let S(t) be the semigroup generated in H
by A, with domain D(A) = {h € V; Ah € H}. Then

0g | O =S5O+ [ St=s)ton@)ds+ [ St~ B du
Vte[0,T)
(see [2], [13]). Our first result is the following:

Theorem 2.1. The linear manifold Yo = {4,(T); v € I*(0,T; H) } is dense in the
space L*(Q, Fr; H).

Proof. Using (2.6), it suffices to check that, if f € L*(Q, Fr; H) and

27) B([ ST = )(1ov(s)) ds, f) =0 Vv e 20, T; H),
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then necessarily f = 0. Let f be a function in L*(Q, Fr; H) satisfying (2.7) and
assume that ¢ € 1%(0,T; H) is given by

—Oip—Ap=0 in Q,
w=0 on 3,

o(T) = f,

ie. o) = S(T —t)f. It will be sufficient to prove that E[p(t)|F:] = 0 for all
€ (0,T). Indeed, this and the continuity property (2.2) of the family {F;} clearly
imply f = E[p(T)|F:] = 0. We know that

E/ ), lop(s))ds =0 Vv e I%(0,T; H).
Consequently, 1o E[p(t)|F] is a stochastic process in 12(0,T; H) such that
T T
B [ (0(s), LoElp(s) R ds = [ E(El©(s), lop(s)IF)) ds
—/ ((s), low(s))ds =0 Vv e I20,T; H)

and one has
(2.8) loE[p(t)|F] = 0.

For each t € (0,T), E[p(t)|F:] = S(T — t)E|[f|F] is real analytic in the variable
z € D. Hence, one must necessarily have E[p(t)|F]) = 0 for all t € (0,T) and the
theorem is proved.

Remark 2.1. We deduce from theorem 2.1 that, for all y; € L%(Q, Fr; H), £ > 0 and
8 > 0, a control v € I%(0,T; H) can be found such that
Pllyo(T) —wal <€} 21-6.
The existence of a control v € I2(0,T; H) such that P{|y,(T) —y4| < €} =1is an
open question.
The assertion in theorem 2.1 remains true for systems governed by more general
equations. More precisely, one has:
Theorem 2.2. Assume that, in (2.5), A € L{V; V") is an operator of the form
Ay = 8(a;;0;y) + 0i(biy) + cy,
where the coefficients satisfy
ai; € CH(D), by,ce L=(D)
and the usual ellipticity condition

ai(2)NN > oA VAeRY, VzeD, a>0.

Then the corresponding linear manifold Yr = {y,(T); v € I*(0,T; H)} is dense in
the space L*(Q, Fr; H).
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Proof. Tt is analogous to the proof of theorem 2.1. Thus, let us denote again by S(¢)
the semigroup generated by A in H. Let A* and S*(t) stand for the corresponding
adjoint operators. Assume that f € L%(Q, Fr; H) and (2.7) is satisfied. By putting
o(t) = S*(T —t)f, one finds again (2.8).

Unfortunately, now E[p(t)|F] is not in general real analytic in z for 0 <t < T.
So, we cannot deduce directly from (2.8) that E[p(t)|F] = 0 for all ¢ (this would
suffice). However, using the fact that the equation —0yp — A*p = 0 has the unique
continuation property, this can be arranged. This is shown in the following

Proposition 2.1. Let the assumptions in theorem 2.2 be satisfied. Assume that f €
L*(Q, F; H) and 1oE[S*(T —t)f|F:] =0 for allt € (0,T). Then

(2.9) E[S*(T —t)f|F] =0 ae inD Vte(0,T).

Proof. Our assumptions on A imply unique continuation for all functions S*(T' —t)h
with h € H (cf. [16]). In particular, if h is such that 1oS*(T — t)h = 0 for all
t € [11,72), then S*(T' —t)h =0 a.e. in D for all t € [y, 7). Let us fix 7 € (0,T) and
F € F. and let us prove that

(2.10) /F E[S*(T — 7)f|F,]dP = 0.

Since 7 and F are chosen arbitrarily, this will imply (2.9). We observe that, for each
te[0,T), '

[.8"@—0faP = ST - (B ).

Also, from the properties of conditional expectation, one has
/FS*(T—t)fsz /FE[S*(T—t)fm] dP Vte[r,T].
Hence, E(1rf) is a function in H such that
10S*(T — )(E(Lrf)) = /F 10E[S*(T — ) f|F]dP =0 Vte[rT).
From the unique continuation property, (2.10) is obtained.

Remark 2.2. We can extend to the stochastic framework the penalization methods
in {7]. More precisely, assume that y, is given in the space L?(Q, Fr; H) and set

T
Ji(v) = E /0 [o]2dt + kE|yo(T) — yal? Vv € I%(0,T; H)

for each k > 1. It is not difficult to prove the existence and uniqueness of a process
1), minimizing J; in 12(0, T; H). Let us set §x = ys,. Then one has

(2.11) lim E|gi(T) — yal®> = 0.
k—o0

Indeed, if & > 0 is given and E|y,(T) — yal® < £, the following holds:

T
BEI9u(T) — vl < Ju(0k) < J(v) < k2 + E/O w2dt Vk>1.

From this, (2.11) follows easily.
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Remark 2.3. If B is not random and satisfies

B € C°([0,T); L(K; H))
and y4 = 0, then it follows from the results in [10] that ¥y is a feedback control. To
be more precise, one has

() = —10Qk ()i (1),
where Q. is the unique solution in C°([0,T]; L} (H)) to the Riccati equation

T
Qult) = kST —1)S(T 1) = [ 5(s ~ )Qu()10Qu($)S(s ~ 1) ds

i

(here, £F(H) denotes the set formed by all self-adjoint nonnegative operators in
L(H)). Furthermore, in this particular case the optimal cost is given by

T
Jk(’f)k) = (Qk(O)yo,y()) +/0 trace B*(t)Qk(t)B(t)W dt,
with W € L(H) being the covariance operator of w;.

Remark 2.4. Let us finally mention that the duality methods in [7] also work in this
context. More specifically, let Z stand for the Hilbert space L%(Q2, Fr; H) (with norm
|- |z and scalar product (-,-)z). Assume € >0, yo € H and y4 € Z are given. It is
then natural to minimize

1
2.12 B 2 dy dt
( ) 2 Ox(0,T) [ol” do
over the (nonempty) set
(2.13) 20,7 H) N {v; [l5(T) —vallz <e}.

In the conditions of theorem 2.2, there exists exactly one minimizer (up to an additive
function vanishing on O x (0,T)). This is given as follows. Let us introduce the dual
functional

{ ) =38 [, o 18P dwdi+ellfllz = @ )z

VfeZ,

where g = ya — S(T)yo. Here, we have used the notation @(t) = E[p(t)|F], with
@ € I?(0,T; H) being given by

—Op—A'¢=0 in Q,

. p=0 on X,

o(T) = f,

It can be proved that J : Z — R is strictly convex, continuous and, due to unique
continuation, coercive. Consequently, there exists one and only one f € Z satisfying

A,

(2.14) JH<I() VieZ

Let f be the solution to (2.14). Then, if we set 9(t) = E[@(¢)|F] for all ¢, it is not
difficult to check that 1o is the control process minimizing (2.12) in the set (2.13).
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3. A null-controllability result

In this section, we present a null-controllability result for (2.5). Again, this is the
analog of a deterministic result.

Let us fix a positive function v € C=(0,T) such that v(t) = ¢ near t = 0 and
¥(t) = T —t near t = T. It will be assumed that the hypotheses in theorem 2.2
hold, that B is not random and satisfies B € C*([0, T]; £(K; H)) and, also, that the
support of B(t) does not intersect O for all .

Theorem 3.1. There exists a positive function p = p(x) such that, if
el=z)
60 [ OO B 10108 R ) 5 < +oo,

then, for each yo € H there exists v € I?(0,T; H) satisfying y,(T) = 0.

Sketch of the Proof. We will adapt the arguments in [8] in the context of (2.5). We
will previously rewrite the null-controllability problem as an equivalent problem for
which yp = 0.

(i) Let 6 = 6(t) be a C* function such that 6(¢t) = 1 near ¢ = 0, 6(t) = 0 near
t=T and 0 < @ < 1. Let us introduce the function &, with

£(t) =Styo V.
Then, by setting g = —@'(t)¢ and 2, = y, — 0(t)&(¢), one sees that y,(T) = 0 if and
only if the unique solution to
B2y — Azy=1pv+g+Bu; in Q P-—as,
(3.2) zz=0 on ¥ P-—as,

z,(0)=0 in D P-—as.
satisfies z,(T) = 0.

(ii) Following the ideas of [8], let us introduce (and solve) an auxiliary variational
problem.

Let O be a nonempty open set satisfying @’ cC @. We will put D' = D\ O,
Q =D x(0,T) and ¥ = 0D’ x (0,T). As usual, O; will stand for the open 7-
neighborhood of ©'. The usual co-normal derivative operator associated to A and
A* will be denoted by d4. We will need the following

Proposition 3.1. There exist a positive function p € C*(D) and a positive constant
C, such that

(10l +1D%) e + [[ 47 Vgle ™ + g2
Q o A
<G <//Q, |0:q + A*q|2e"2$)

for all functions g € C*(Q’) such that ¢ =0 on ¥’ and 949 =0 on 80’ x (0, T).

(3.3)

This Carleman inequality is proved in [9] (see also [6] and [17] for other more
general estimates of the same kind). In the sequel, it will be assumed that B satisfies
(3.1) with p furnished by proposition 3.1. We will prove that, for some v, one has
2,(T) = 0.
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Let us introduce the linear space
Uy={qecC*Q); g=00n%, 8,g=00n30" x (0,T)}.

From proposition 3.1, we know that
[p,q] = / /Q (O + A'p)(Bug + A"g) e

is a scalar product in ¥y. Let ¥ be the completion of ¥q for the scalar product [+, -].
Then (3.3) is satisfied for all ¢ € ¥. Let us put P = L*(Q, F; ¥), a Hilbert space for
the scalar product

Blp.) = B [[ (0 + A'B)Oua + A'g) e,
Let us also put
(g = _E//QIQQ‘i‘E//Q,(qatB-i'ath)wt VgeP.

Then, using (2.1), (3.1) and proposition 3.1, it can be shown that [ is a bounded
linear form on P. Arguing as in [8], we introduce the following problem:

(3.4) Elp,q=(l,q) VqeP, peP

Obviously, (3.4) possesses exactly one solution p. Let us put z = 6'25(8@ + A*p).
Among other things, one has z € L2(Q2, F; L*(Q")).
(iii) It can be seen that z has sample paths in C°([0,T]; H~'(D’)) and satisfies

(2(t), q0) = /Ot{(z(s)zA*QO) + (9(s),q0)} ds + (/OtB(s) dws, go)

P-as. for all t € (0,T) whenever g is (for instance) a function in C§°(D’). The

stochastic integral arises as a consequence of Ito’s formula (here, the fact that B is

not random is needed). It is thus clear that z € I2(0,T; L*(D’)). Let & be such that

0 < 6 < 3dist (¢, 00) and let x € C®(D) be a cut-off function satisfying
0<x<1, x=0 in 05, x=1 inD\ O

Then, 7 = x 2z can be extended by zero to the whole domain Q. Its extension,
also denoted by %, satisfies 7 € I?(0,T; H) and also the following equalities for all
g0 € D(A*) and all t € (0,7):

t t
(0 a0) = [ {((s), A"a0) + (9(6),00)} ds + (|| B(s) duvs, a0)
t
+ [ABix(s), 1a0) + (@(5) + (x ~ Dg(s), @)} ds.
Here, b = 2a;; O;x and € = ag; ijx -0 O;x. From known results, we are now able to

ensure that Z € I?(0,T; V) (for example, see [2], [13]).
(iv) Let us introduce a second cut-off function ¥ € C*°(D), with

0<¥<1, Xx=0 in O, ¥=1 in D\ O
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By putting Z = ¥ Z, we see that, for some v € I2(0,T; H),

(30 00) = [ 1(2(5),A'a0) + (9(5),a0)} ds + ([ Bs) duwsy a0)

(3.5) t
+ /0 (lov(s),q)ds Vo € D(A"), Vie(0,T) P—as.

From (3.4), (3.5) and the fact that z € I?(0,T;V), it is easy to deduce that z = 2,
(the unique solution to (3.2)) and also that 2(T) = 0.

4. The case of the Stokes and quasi-Stokes systems

The assertion in theorem 2.2 also holds in the case of a quasi-Stokes stochastic
system of the form (1.1) with bounded coefficients a; and c;;. To be more precise, let
us introduce the space

V={pcCrDN; V-¢=0 inD}

and let us denote by V (resp. H) the closure of V in H3(D)¥ (resp. L*(D)"). In this
section, A will stand for the operator in L(V; V') given by

(Ay,z) = —/Q{Vy - Vz + a(2)y;0;2; + ci(x)yiz; }de Vy, z €V,
where it is assumed that
A5, Cij € LOO(D)
Regarded as an unbounded operator on H with domain
D(A)={yeV;Ayc H},

A is the generator of a semigroup on H, again denoted by S(¢). Assume B and y,
are given and satisfy (2.3) and (2.4). For each v € I%(0,T; L*(D)"), there exists one
and only one solution ¥, to the problem

¥y € I2(0,T; V) N L2(Q; C°([0, T}; H)),
{ Y(t) = yo + /Ot{Ayv(s) +1ov(s)}ds + /OtB(s) dw, Vte[0,T].

In fact, if Py stands for the orthogonal projector from L?(D)N onto H (the Leray
operator), then y, is given by the following identities:

{ wo(t) = S(t)yo + /0 " S(t - 8) [Pulov(s))] ds + /O " S(t = )B(s) duw,
Vit e 0,T).

Using this and the unique continuation property established in [4], we can argue as
in the proofs of theorem 2.2 and proposition 2.1. The conclusion is:

Theorem 4.1. With the notation used in this section, the linear manifold Yr =
{9,(T); v € I*(0,T; L*(D)N) } is dense in the space L*(Q, Fr; H).
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Remark 4.1. For systems governed by stochastic quasi-Stokes problems of this kind,
we can adapt the arguments in Remarks 2.2, 2.3 and 2.4. Thus, similar penalization,
feedback and duality results can be obtained.

Remark 4.2, If (1.1) is the stochastic Stokes problem (i.e. a; = ¢;; = 0), it is possible
to prove that, for fixed 1 < j < N, the set

{v(T);ve I*(0,T; L3 (D)N), v; =0}

is also dense in L?(), Fr; H). The proof is as in the similar deterministic case
(cf. [11}).

Remark 4.8. For the stochastic 3D Stokes problem in a cylindrical domain D =
G x (0, L), one also has approximate controllability in a “generic” sense with respect
to G with controls in the set

Upa = {v € I*(0,T; I*(D)’); vy = v, =0}.

More precisely, using the results in [12] and arguing as above, it can be seen that,
for any given bounded domain G C R? of class C* (with k& > 3), there exists another
domain G arbitrarily close to G in the C* topology such that the corresponding set
{4o(T) ; v € Upq} is dense in L*(Q, Fr; H).

To our knowledge, whether or not null-controllability (i.e. theorem 3.1) holds for
systems governed by (1.1) is an open question.
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ABSTRACT. This article presents a reduced basis method for eonstructing a reduced order
system for control problems governed by nonlinear partial differential equations. The major
advantage of the reduced basis method over others based on. finite: element, finite difference
or spectral method is that it may capture the essential property of solutions with very few
basis elements. The feasibility of this method is demonstrated for boundary control prob-
lems modeled by the incompressible Navier-Stokes and related equations with the boundary
temperature control and boundary electromagnetic contrel in ehannel flows.
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1. Introduction

Real time simulations of control problems that imvolve partial differential equations
as state equations are often formidable problems to solve. Our work was motivated by
the recent interest in optimal flow control of viscous flows which are control problems
involving Navier-Stokes equations as state equations; see [11] for a review. These
problems are by far the most challenging control problems in computational engi-
neering and science. The major difficulty is mainly due to the nonlinearity in the
state equations and these state equations when discretized can number in millions.
Thus the conventional approaches cannot be adequate for solving such large scale
control problems

In this article we discuss a reduction type method which may provide an avenue
to overcome this difficulty. In this method hereafter called reduced basis method
one uses bhasis functions which are closely related to and generated from the problem
that is being solved. This is in contrast to the traditional numerical methods such
as finite difference method and finite elements method which uses grid functions and
piecewise polynomials, respectively, as basis functions.

There are several approaches available for the selection of basis functions in reduced
basis method. One such approach is Taylor approach in which one uses solutions at a
reference point in the parameter space along with their derivatives as basis functions.

This work was supported by the Air Force Office of Scientific Research under grants AFOSR
F49620-95-1-0437 and AFOSR F49620-95-1-0447. This work was partially supported by the Office
of Naval Research Grant N00014-96-1-0265.
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Another approach which we call Lagrange approach uses solutions of the problem at
various parameter values as basis functions. Finally the Hermite approach is a hybrid
of Lagrange and Taylor approaches which uses solutions and their first derivatives
of the problem at various parameter values as basis functions. The applications
of reduced basis method to structural mechanics problems can be found in [1] and
[6]-[7].

Our goal here is to demonstrate the applicability and feasibility of reduced ba-
sis method for control problems governed by Navier-Stokes type partial differential
equations. We will consider vorticity minimization problems in backward-facing step
type channel geometry as a prototype control problem. Two fluid flow situations
are considered: An electrically conducting fluid under applied magnetic field and a
thermally convective fluid. In the first situation the control is effected by boundary
electric potential and in the latter the control is boundary temperature.

Electromagnetic Control. When the fluid is electrically conducting, such as sea
water, one can obtain an interesting control mechanism by appropriately placing
electrodes and magnets along the boundary of the flow domain such that there is
a coupling between magnetic field B and the current j, see Figure 1.1 for one such
setup. This coupling produces a forcing j x B which appears in the Navier-Stokes
equations and is known as Lorenz force, see [10]. This forcing can be exploited to
control fluid flows. In §5, we will descirbe this control mechanism and in §6 we
will use this for a vorticity minimization problem in fluid flows to demonstrate the
feasibility of reduced basis method.

FIGURE 1.1. A simple diagram of MHD setting
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Boundary Temperature Control. By imposing a temperature gradient in the flow
by adjusting boundary temperature, one can either enhance or counteract the flow
effects. In §5-6, we will use this control mechanism for a vorticity minimization
problem in fluid flows to demonstrate the feasibility of reduced basis method.

A Vorticity Minimization Problem. As a prototype problem for vorticity minimiza-
tion in fluid flows, let us consider the flow through backward-facing step channel at
Reynolds number 200. For this Reynolds number range flows can be assumed to be
steady and two dimensional. Thus we consider a steady plane flow in a backward-
facing step channel as shown in Figure 6.1. The corresponding flow at this Reynolds
number is shown in Figure 6.3 which has a corner circulation near the corner. Our
objective is to suppress this recirculation by using the control mechanisms discussed
previously. We formulate this as an optimal control problem with a cost functional
representing vorticity in the flow which is thus minimized subject to the governing
equations of the flow under consideration.

We will consider the two control mechanisms described previously in two different
flow setting. That is flow is either electrically conducting or thermally convective and
we will consider electromagnetic control in the former and boundary temperature
control in the latter.

2. Reduced Basis Spaces and Reduced-Order Equation

In order to illustrate the reduced basis method, we assume for ease in exposition
that we are dealing with nonlinear dynamics about the equilibrium points. Consider
the the parameterized stationary problem

(2.1) Ely,u) =0 forpel, ye X,

where p represents some physical parameter, for example, Reynolds number or vis-
cosity and £ : X x A — X* is C?. Equation (2.1) defines a solution function
p € A — y(u) € X. We construct the reduced basis elements by the interpolation of
solution function p — y(u) as follows.

The Taylor Subspace. In this choice, one uses the Taylor expansion of function
y(u) at a reference value of p, say p*, and the reduced basis subspace Xg is defined
as

o .
(2.2) Xg = span{y;|y; = a_j“‘:“*’ j=0,...,M}

The jth derivative y; can be calculated from the equations resulted by successive
differentiation of (1.1), i.e.
(23) gy(ymlj‘o)yj = f:i(yanl" "ayj—*la:u*)'

For example, 1, satisfies the equation

Ey(o, )11 = —Eulwo, 7).

We note here that each y; can be obtained from its predecessors by solving a linear
system with the same linear operator &,(yo, 1*). However, one cannot continue to
use the same basis elements generated at fixed parameter p* to compute solutions
when the parameter of interest is significantly away from it. In such cases reduced
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basis elements have to be updated and the solution is sought in the new reduced basis
space. Moreover, generating the right hand side of (2.3) could be quite complicated
in certain problems. This choice has been used in [7] for structural analysis problems
and in [8] for high Reynolds number steady state fluid flow calculations.

The Lagrange Subspace. In this case, the basis elements are solutions of the non-
linear problem under study at various parameter values ;. The reduced subspace is

given by
(2.4) Xg =span{y’ly’ = ()5 =1,...,M}.
The Lagrange basis wasused to study structural problems in [1]. A possible advantage
in this choice is that updating the basis elements can be done one basis element at a
time instead of generating the whole space.

The Hermite Subspace. This is a hybrid of the Lagrange and Taylor approach. The
basis elements are solutions and their first derivatives at various parameter values p;.
The reduced subspace is given by

. P . -
(2.5) Xgr=span{y’ = y(u;) and é%hzuj,] =1,...,M}.

Suppose we have @ reduced basis space Xg in X. Let m = dim(Xg) and {¢;} is
a basis of Xg. Then we can construct the reduced-order equation by the Galerkin
approximation, i.e.,for y, = Yi%; o; ¢; € Xr

(2'6) gm(ymyﬂ)i = <g(ymnu’)7¢i>X*><X

forl1 <i<m.
For the evolution equation

(27) Dy(6) + Blt,y(2)) = 0

we, for example, -generate reduced basis elements {¢;}i2; in X by the solutions at
m different time instants to (2.7). ‘Given the reduced basis space Xg, we define the
reduced-order equation for ¥, (t) = X, a:(t)ds,

(29 () + Bt 3 (0), 6 xx =0

for all 1 < ¢ <.m. In [4] this method has been carried out and its feasibility has
been demonstrated for channel flow simulations in which reduced order solution u™
is formed by setting

W@=§%@%

where ¢, = u;y; —w;, i=1,2,...,m —1 and ¢,, = u,,. We further take o, =1 s0
that the boundary conditions are satisfied. The solution u™ is computed from
(Zu™, v+ a(u™, v7)+ c(u™, um,v™) = (£,v") for all v € V7',
where V' = span{@; : i = 1,...,m — 1} is the span of the test functions.
The basis elements were generated by computing the flow from the full model at
eleven time instances between 1 and 11. The time step used in the reduced order
model was .001.
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The dimension of the reduced basis space is very much problem-dependent. The
reduced basis elements constructed by the above mentioned approach can be nearly
linearly dependent. So we may further reduce the dimension by the conditioning of
the mass matrix @Q:

Qi = (6i, $5)x-

Our computational experiments and the computations reported for structural prob-
lems in the references mentioned earlier seem to indicate that an accurate approx-
imation can be obtained for large range of parameter values using 5 to 10 basis
elements. Therefore, although the resulting reduced order model is dense, they are
small compared to the sparse but large system that result from the standard basis
functions.

According to our comparison study carried out in [4] for driven cavity incompress-
ible Navier-Stokes calculations, the performance of Hermite approach is better than
that of Lagrange. The basis elements for the Lagrange approach were selected at
Reynolds numbers 100, 300, 500 and 700, and that for the Hermite was selected at
300 and 700. The comparison was carried out by computing the driven cavity flow at
Reynolds number 1200. The Ly-norm difference between the full mixed-finite element
solution u; and the reduced basis solution using these two approaches are as follows:
|lu; —ug||2 = 0.0889 and ||us, —uyl|2 = 0.0766, where u; is the solution obtained using
Lagrange approach and u, is that obtained using Hermite approach.

3. Error Analysis

In order to justify the reduced basis solution y,, we need to have a post verification
criterion. In general we formulate it as an error analysis as follows. Let X and Y be
two Banach spaces and A be a compact set. Given a C? mapping

E:(y,p) X xA—E(y,p) €Y,

and we consider the equation

(3.1) E(y,p) = 0.
The family {(y(p),u) : p# € A} is said to be a branch of nonsingular solutions of
equation (3.1), i.e.,
p— y(p) is a continuous function from A into X and DyE(y, p) is
an isomorphism from X ontoY for all p € A.

Let us consider the reduced order problem

(3'2) gm(ymaU) =0.

defined on the reduced basis space X,,. We assume that &, : X;m X A — Yy, is C2.
For the ease of our discussions we assume that X,, C X and Y,, C Y. The norms on
X, and Y,, are induced from X and Y norms, respectively. The problem is to find
the solution y,, € X,, such that (3.2} is satisfied for a given u € A.
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We assume that Dy&p(Jim, p) is an isomorphism from X, onto Y, where g, is a
given element in X,,,. We introduce the following notations;

em(ﬂ) = ||5m(ﬂm7N)HYm,
Yo (18) = | Dyon(Fmr 1)~ | £(¥oms Xom)
Son(1:0) = {v € Xin t Ju—vllx,, < o,

Lo(p;a) = sup | Dy (fim, 1) — Dyln(v, )]l £(Xm Yom)-

VES(Ym,

We next state a theorem regarding the error estimate which is derived from Theorem
IV.3.1 in [2] for the approximation of branches of nonsingular solutions.
Theorem 3.1. Suppose D& (§m, ) is an isomorphism of X, onto Y, and
2% (14) L (1, 2m (1) €m (1)) < 1.
Then the problem (3.2) has a unique solution (ym(u), ) such that:
Y (12) € S(Fimi 29m (W)Em (1))-

In addition, ym(u) s the only solution of (3.2) in the ball Sy, (m; ) for all >
2Ym (1) €m (1) that satisfy Y () Lm(p; 0) < 1 and we have the estimate:

ym (1) —Vmllx < [V (1) /(1 — Vor (1) Lim (445 a)]”gm(vmaﬂ)”Y for all vy, € Sm(gnwa)-
| ]

Moreover, we have the following corollary.

Corollary 3.2. Suppose there exists an element §m € Xy such that Dy&(§im, 1) is an
isomorphism of X ontoY and

(3.3) 2v() L(p, 2v(p)e(w)) <1

where _
e(1) = NE(@ms )l

V(1) = |1 DyE (s 1)l v,
S(y;a) ={ve X :|u—v|x <a},
L(p; @) = 8UPyes(gm,0) | DyE (Fimy 1) — Dy (v, )| e,y

Then the problem (3.1) has a solution (y(u), ) such that:

y(1) € S(Fm; 2v(1)e(w))-

In addition, y(u) is the only solution of (3.1) in the ball S(jm;c) for all a >
2v(u)e(p) that satisfy v(p)L(p; o) < 1 and we have the estimate:

ly(w) — vllx < [v(w) /@ = v(W) L [E (v, wlly

for all v € 8(Jm, @). |
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We can apply Theorem 3.1 and Corollary 3.2 to obtain the following error estimate.

Theorem 3.3. (i) Suppose ym(p) € X is a solution to (3.2) and assume §, =
ym(1) satisfies the condition in Corollary 3.2. Then we have a solution y(u) €
S (Gm; 2v(p)e(1)) to (3.1) and the estimate

(3.4) Ny () = ym ()l < [y() /(1 = (@) L NE (Y (1), ) ly

with o = y(u)e().

(ii) Suppose there exits an element §m € X, such that the conditions in Theorem
3.1 and Corollary 3.2 are satisfied. Furthermore, we assume that oy, = 29, (p)em (1)
satisfies y(p)L(u; o) < 1. Then we have (3.4) with & = ay,. N

4. Optimal Control Problems

In this section we discuss the optimal control problem and the application of re-
duced basis method. Consider the minimization problem

(4.1) min J(y,u) subject to E(y,u) =0

over u € U,g C U. Here X and U are Hilbert spaces and £ : X x U — X* is C2. We
assume that U = R™ and 1,4 is closed and convex. The Lagrange reduced space can
be defined by

Xg =span{y’ € X|E(W,vw) =0, j=1,..., M},
where v/ is a sampled point in U,g. In order to obtain a lower-order reduced basis
space, if m is large then we may consider the following pre-selecting step:
e Let u*, o € A, be the points in U,y defined by

u":ﬂ+z 6iaiei

where « is the integer-valued vector, and §; and e; are the step size and unit
vector in the i-th direction.
e We determine y* € X by solving E(y, u®) for each o € A.
e We find an index o in A such that J(y*, u®) is smallest.
e Then, we select the sampling set u; by
ut =u, u =u™ + 8¢, and uF! =wu,, — e

The Hermite reduced space can be defined by

Xp =span{y’ € X x U|E(y’,v’) = 0 and ;‘)y (W), 1<i<m, j=1,...,M}.

Uy

Here, & = 2% (u;) can be calculated by solving the sensitivity equation

T Bug
(4.2) E(Y, w)E = —Eui(yo, ).

Here we can use the pre-selecting step to select 4/ as for the Lagrange case.
Suppose we have the reduced basis space Xg. Then we use the Galerkin method
to project the equation onto Xg, i.e., y™ =37, a; ¢; € Xg satisfies

En(y™, u)i = (E(y,u), i) x+xx-
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Then we consider the reduced-order control problem
(4.3) min  J(y™,u) subject to En(y™,u) =0 and u € Uy

It is a finite dimensional constrained minimization problem and can be readily solved
by the constrained optimization methods. A necessary optimality condition is given
by

{ (Dy&m(Ym tm)) Am + Dy (Ym, Um) = 0
(4.4)

(Dugm(ym, um)(u - um)a )‘m) + DuJ(ym, um)(u - um) >0

for all u € U,g, assuming D,&,, at the optimal pair (Ym, um) to (4.3) is an isomor-
phism. Similarly, we have the necessary optimality condition for (4.1): there exists a
Lagrange multiplier A € X such that

{ (DyE(y*,u*)) A + DyJ(y*,u*) =0
(4.5)

(DL E(Y*, u*)(u— u*), Ny xexx + D, J(y*,u*)(u —u*) >0

for all u € U,g, assuming D&, L(y*, u*) at the optimal pair (y*,u*) to (4.1) is an
isomorphism. Suppose u,, and u* is interior points of Uss. Then we can apply
Theorem 3.3 to equation for {y, A\, u) € X x X x U

Ely,u) =0
{ (Dyg(y7 ’U,))*)\ + Dy‘](y)u) = O

(4.6)
(DuE(y,w))*A + Dy, J(y,u) =0

In general we have
I (Y tim) < (™ (w),u) = J(y™ (), u) — J(y(w), w) + J(y(u), u)
for u € U,y and thus setting u = u*, we obtain
J(y(um)’ um) -J < J<y(um)7um) - J(yrm um) + J(ym(u*)’ u‘*) - J(y(U*)’U*)'
Hence, if U,q is compact then
T(y(um), um) — J* < 2M max [ly™(u) —y(u)lx

for some constant M.

5. The Reduced Basis Method for Flow Control

In this section we discuss vorticity minimization in fluid flows using boundary tem-
perature control and electromagnetic control. We first present the weak variational
formulation of the optimal control problems and then discuss their approximations
in finite element and reduced basis setting.

Preliminaries. We denote by L%(Q) the collection of Lebesgue square-integrable
functions defined on Q. Let HY(Q2) = {v € L*(Q): 2 e [*Q) fori = 1,2.} and
HYQ) = {v € H(Q) : v|r = 0}. Vector-valued counterparts of these spaces are
denoted by bold-face symbols, for e.g., H(Q)L = [H*(Q)]* where d = 2. We denote
the norms and inner products for H*(Q) or H{Q)s by || - || and (-,)s, respectively.
The L*(Q) or L*(Q) inner product is denoted by (-, -).
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5.1. Electrically Conducting Flow Equations and Variational Formulation. In this
section we describe the governing equations for a steady electrically conducting flow
and their variational formulation. Suppose there is a length scale £, a velocity scale
U and a magnetic-field scale By in the flow, then one can define nondimensional
magnetic Reynolds number R,, = pooU{, where pg is the magnetic permiability,
Alfven number Al = BZ/upU? and Reynolds number Re = poUf/p. Next, if we
nondimensionalize according to x « x/£, u < u/U, j « By/{, E «— UBj and p <
(p — g - x)/(poU?), we obtain the dimensionless equations for electrically conducting

flow:
u-Vu=-Vp+Al(jxB)+3Au and V-u=0 inQ,

j=Rn[-Vé¢+(uxB) and V-j=0 inQ,

VxB=j and V-B=0 in{.

Here, u denotes the velocity field, p the pressure field, j the electric current density,
B the magnetic field and ¢ the electric potential. Moreover, we denote by €2 the flow
domain which is bounded in R?2 with boundary T

To simplify the exposition, let us assume that we are dealing with a special case
in which the externally applied magnetic field is undisturbed by the flow. That is,
we assume that B is given. Such an assumption can be met in a variety of physical
applications, for example in the modeling of electromagnetic pumps and the flow
of liquid lithium for fusion reactor cooling blankets, see [10] and [12]. Under this
assumption, the term j x B in the Navier-Stokes equations can be written as

Al(jxB)=N(-Vé+uxB)xB

where N = Al - R,, and if we eliminate j by applying charge conservation condition
V-j=0toj=R,[-Vé+ (ux B)], we arrive at the following simplified system
modeling the flow:

—A&Au+u-Vu+Vp+N(Vp—uxB)xB=0 inQ,
(5.1) V.u=0 inQ,

—Ap+V-(uxB)=0 inQ.

where N is the interaction parameter. The system (5.1) is supplemented with bound-
ary conditions

(5.2) u=u, onl'’, ¢=gonly and n-j=0 only

where T is the disjoint union I' = T'yUT; and g denotes the control function, namely,
electric potential on I'y. Such a control can be effected by attaching electric sources
with adjustable resistors to the electrode along the boundary. We assume that the
flow is two-dimensional and the applied magnetic field B is perpendicular to the
flow plane, i.e., B = (0,0, By)’, and that the cross product u x B is understood as
(uy, ug,0)% x (0,0, By)*. Let 1t € H(Q) and ¢ € H*(2) be such that

d=up onT and ¢=g onTy
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and V; = {¢ € H'(Q) : ¢ =0 onI'g}. Then, variational formulation of (5.1)-(5.2) is
given as follows: seek u € H}(Q) + @, p € L*(Q) and ¢ € H}(2) + ¢ such that

(2(Vu,Vv) 4+ bo(u,u,v) + N (Vé —ux B, v x B)
—(p,V-v) =0 Vv e H}),

(V-u,q)=0 Vge L*¥Q),

(Vo —uxB,Vy)=0 V¢ €V
Here, the trilinear form bo(-, -, -) is defined by

(5.4) bo(u,v,w) = (u-Vv,w)
for u,v,w € H'(Q).

5.2. Thermally Convective Flow Equations and Variational Formulation. In this
section we describe the governing equations for a steady thermally conducting flow
and their variational formulation.

If we assume there is a length scale £, a velocity scale U and a temperature
scale Ty — Tp in the flow, then one can define nondimensional Prandtl number
Pr = pcy/k, Grashof number Gr = B63p3|g|(Ty — Tp)/u? and Reynolds number
Re = poUl/u. Next, if we nondimensionalize according to x « x/{, u « u/U,
T — (T —Ty)/(Ty — Ty), and p « (p — g - x)/(poU?), we obtain the following nondi-
mensional form of Boussinesq equations:

—AAu+(u-V)u+Vp+25Tg=0 in(,

(5.5) V.u=0 ingQ,
—s- AT +u-VT'=0 inQ,

where g is a unit vector in the direction of gravitational acceleration.
We consider the boundary condition as follows.

(5.6) u=uy onl, T=g onIly and g—:zO on Iy

where g represents the boundary temperature control function. Let T € H(f2) be
such that T = g on I'g and 1 be as defined previously. Then, variational formulation
of (5.5)-(5.6) is given by

& (Vu, Vv) +bo(u,u,v) + (8T g,v) — (p,V-v) =0 Vv E H(Q),
(5.7) (V-u,q) =0 Vge L*Q),

bl(u7 Ta d]) + kK (VT7 V¢) \V/’(,b € ‘/17
foru € HY(Q) + 1, p € L*(Q) and T € H3(Q) + T, where 8 = 2%, k = 5 and the
trilinear form (-, -, ) is given by

bl(u7Ta¢) = <11VT,¢>
for T, ¥ € H(Q) and u € H*(Q).
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We can establish the existence of solutions to (5.3) and (5.7) using the above
properties of the trilinear forms and the Hopf’s lemma, see [5].

5.3. Mixed Finite Element Approximation. In order to construct the reduced basis
element we use the mixed finite element method [3] to approximate solution to (5.1)-
(5.2) and (5.5)—(5.6).

Let us define, using standard finite element notations,

X" = {v e C°Q) : v|x € P(K), on each element K},

Xt ={v=(v,1)7 € COQ) :v; € X i=1,2}
and -
S" = {q € C°Q) : q|x € Pi(K), on each element K}.

Also we define X} = {v € X" :v =0 onI'} and X} = X" N V;. That is, we choose
continuous piecewise quadratic polynomials for both components of the velocity u*
and electric potential ¢" for (5.1) and temperature T" for (5.5), continuous piecewise
linear polynomials for the pressure p*. On each triangle, the degrees of freedom
for quadratic elements are the function values at the vertices and midpoints of each
edge; the degrees of freedom for linear elements are the function values at the vertices.
Here, the spaces are defined over the same triangulation of the domain Q2 = UK.
This selection is known to satisfy the inf-sup condition, see [2].

The finite element equation of (5.3) for u* € X*, p* € S* and ¢" € X" is given by

(Vuh, Vvh) + by (uh, u”, vh)

1
Re
+N (Vé" —ub x B,vt x B) — (p", V- vh) =0 Wvh € Xt

h
(5'3) (v . uh’ qh) =0 th € Sh,
(V4" —ut x B,Viph) =0, V' € XP,

where u”|r = u} and ¢"|r,, = g" and ul, g" are the projection of ug, g onto the finite
element spaces, respectively. Similarly, for the Boussinesq equation (5.7) we have

L (Vuh, Vvh)+bo(ul, ub, vh)+ (BT" g, v") - (p", V - v) =0 Vv € X§,
(5.7)" (V-uh,¢*) =0 Vg e St

by(uh, T, ¥t) + & (VT*, Vp*)  vph € XT,
where u* € X", T" ¢ X" satisfy u”|r = u} and T"|p, = g*, respectively.

5.4. Boundary Control Problems and Reduced-Order Control Problems. Let U be
the control space defined by

D
U={9=)_gixi g€ R}
=1

where x; is the i-th basis function of U and is the trace of a H*(Q) function onto Ty.
We consider the minimization of the form

(5.8) min ||V x u||3, subject to (5.3) or (5.7)
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where the vorticity V x u is defined by V x u = g—’g - ‘Z—Z; and the cost functional
defines the total friction forces in €2.

We define the reduced basis element by the finite element approximation (5.3)"
and (5.7)", respectively for each control problem. For example, the Lagrange re-
duced basis element (u,p,T) given ¢ € U for problem (5.8) subject to (5.7) can be
constructed by a solution (u”,p? T") to (5.7)" given ¢ € U. For the case of the
boundary control problem, the reduced basis space Xg C X" x X" should consist
of the basis element ®% that corresponds to the reference control g € U, the ele-
ment <I>;-‘ that corresponds to the j-th control in the direction of x;, and the test
functions ¥* € Xz N (Xk x X1). Since u” satisfies the pseudo-divergence condition
(V-ut, ¢") =0 for all ¢" € S* we have the reduced-order control problem;

min ||V x u"||3 subject to
(5.9) 2 (Vut, Vvh) + bo(u, ut, v*) + (BT g, v")

+by (WP, T 9*) + 5 (VT V") = 0
for all " = (vh,9") € XgrN (X} x X}). Here, the element in Xp is represented by

h ok h ho e (9= 85) gn
@ Th) =05+ 0 U+ —5—q’i
j=1 j
where @ = (uP, T"), is a solution to (5.7)" corresponding to the reference control,
o = (uh, T); — (uP, T*)o for 1 < j < p, with (u, T"); being a solution to (5.7)"
corresponding to g+ 6; x; and {¥h} are a basis of the test function space XgN (Xh x
Xhy.
Similarly, for problem (5.8) subject to (5.3) we have the reduced-order control
problem;

min ||V x u?||3 subject to
(5.10) L (Vuh, V) + bo(u?, ut, v*) + N (V¢* — u* x B, v* x B)

(V" —u x B, Vyh) =0,
for all Uh = (vh, ") € XpN (XE x X7).

6. Computational Results

In this section we will give computational result by implementing the computa-
tional procedure for the specific control problem described in §1 using the two pro-
posed control mechanisms. We select the backward facing step channel for our study,
a schematic of this geometry and the finite element grid are given in Figure 6.1 and
Figure 6.2, respectively. It has been observed in a number of computational and
experimental study on this specific channel geometry that a recirculation appears
near the corner region for large Reynolds number. Our aim is to remove/suppress
the recirculation by means of boundary control.




K. Ito and S.S. Ravindran 165

FIGURE 6.1. Schematic of backward-facing step channel
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FIGURE 6.2. Finite element grid for the channel geometry

6.1. Boundary Temperature Control. The aim is to shape the flow to a desired
configuration which in our study means to remove the recirculation by means of
controlling the temperature along the bottom part of the boundary.

We assume that the inflow and outflow are parabolic, i.e. we take the inflow to
be u; = 8(y — 0.5)(1 — y) and the outflow to be u = u, = y(1 —y). We take
the Reynolds number to be 200 and % to be 1. For the temperature we used the
following boundary conditions:

T, and Tyt : L=o
P52 and Fbottom : T = g
Ijp and Tigp T=

Figure 6.3 qualitatively demonstrate the flow for high Reynolds number. Here our
objective is to remove the recirculation that occurs in the corner region *. Therefore
we minimize vorticity in the corner region Q2* which is chosen to be * = (1, 3)x (0, .5).
This leads us to a constrained minimization problem of the type (5.8) and this is
solved by the reduced basis computational method described in §5.4.

Basis elements are computed with g=1, 0.875, 0.75, 0.625, 0.5, 0.3775, 0.25 and
denoted by (w;,T;), i =1,...,7. The test functions {¥y, ..., ¥s} are chosen so that
they have zero boundary conditions. The trial function ®; corresponds to the control
force such that ®; = 0 everywhere on the boundary except on the bottom.

Then we set .

(u, T) = (I)O + Q‘I’l + ZO&Z‘\I/,‘,

i=1
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FIGURE 6.3. The velocity field for the uncontrolled case with Re=200
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FIGURE 6.4. The velocity field for the controlled case with Re=200:
Temperature control
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where g =1, § = —0.75 and
O = (wy,T1), ®1=(ur,Ty) — (w1, Th),
\111 = (u7,T7) — Q(UG,TG) + (1.15,T5), \112 = (u6,T6) - 2(115, T5) + (u4,T4),
s = (115,T5) — 2(114,T4) + (U3,T3), U, = (114,T4) — 2(113, Tg) + (LIQ,TQ),
\115 = (113,T3) - 2(112,T2) + (ul,Tl).

The constrained minimization problem is solved by employing Newtons method
to the necessary optimality condition (4.4). We obtained the boundary temperature
control T' = 0.516 in 7 Newton iterations. The computed control was then used in
the full system to simulate the flow. The resulting flow shown in Figure 6.4 shows
significant reduction in the size of the recirculation region.

6.2. Electromagnetic Control. In this problem, control is effected through bound-
ary electric potential on the top and bottom boundary of the backward facing step
channel. A magnetic field B = (0,0, 1) is applied into the fluid. The boundary con-
ditions for the velocity are the same as in the preceding control problem except for
the electric potential whose boundary conditions are as follows:

Ty, Ty and Toyy - % -0
I1top : b=
Phottom ¢ =go

: ¢ =1

82 *

We take the Reynolds number to be Re = 200 and the interaction parameter to be
N = 1. Here also our objective is to suppress the recirculation that occurs in the cor-
ner region * and thereby obtain a relatively smoother flow. Therefore we minimize
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FIGURE 6.5. The velocity field for the controlled case with Re=200:
Electromagnetic control

R
I
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vorticity in the corner region 2*. This leads us to a constrained minimization prob-
lem of the type (5.8) and we use the reduced basis computational method described
in §5.4 to solve it.

The basis elements were computed with
(91, 92)=(1,1), (1,0.5),(1,0),(0.5,1),(0.5,0.5), (0.5,0),(0,1),(0,0.5)

and the corresponding elements are denoted by (u;,¢;), i = 1,...,8. The test func-
tions {Uy,..., U5} are chosen so that they have zero boundary conditions. The trial
functions ®; and ®, corresponds to the control force such that ®; = 0 everywhere
on the boundary except on the top and ®; = 0 everywhere on the boundary except
on the bottom. Then we set

— 7 —a 5 )
(u,¢) = &g + (g1 5 91)(1)1 =+ (926 g2)¢2 + Zai‘l’i;
1 2 i=1

where g1 = go = 1, 6; = 6, = —0.5 and

Qo=(u1,¢1), P1=(us,d3), Do={(uz,¢7),

U; = (uy,¢1) —2(ug,¢2) — 2(ug,Ba), Vo= (uy,¢1)— (us,¢3) — (ur,¢7),

Vs =(uy,¢1) — (us,¢5) — (W2,d2) — (Ug,P4), Va=(u1,¢1)— (us,¢8) — (u2,42),
s = (uy,¢1) — (ug,d6) — (Ug,P4)-

We employed the Newtons method to the necessary optimality condition (4.4) and
obtained the boundary controls ¢top = 1.0423 and ¢top = 1.7735 respectively, in 5
Newton iterations. The computed control was then used in the full system to simulate
the flow. The resulting flow shown in Figure 6.5 shows significant reduction in the
size of the recirculation region.

In conclusion, we have demonstrated the feasibility of using reduced basis method
in both one parameter and two parameter control setting. Two different control
mechanisms have been used in two different fluid flow setting. Our numerical results
seem to indicate that the reduced basis method can be successfully used in flow control
problems with significant reduction in computational cost compare to the results
presented in [3], [5] and [9] for the same problems where computations were performed
by directly applying finite element methods to the optimal control problems.
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ABSTRACT. The application of a proximal point approach to ill-posed convex control prob-
lems governed by linear parabolic equations is studied. A stable penalty method is con-
structed by means of multi-step proximal regularization (only w.r:t. the control functions)
in the penalized problems. For distributed control problems with state constraints conver-
gence of the approximately determined solutions of the regularized problems to an optimal
process is proved.
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1. Introduction

In this paper the proximal point approach coupled with the penalty technique
is developed for solving ill-posed convex parabolic control problems with state con-
straints. The investigation is concentrated on problems governed by linear parabolic
equations, the objective functional and the sets of admissible controls and states are
assumed to be convex.

Usually, convergence of numerical methods for such problems is studied under the
additional assumption that the objective functional is strictly (er strongly) convex
w.r.t. the control, or that the optimal control possesses the bang-bang property.
We refer here to ALT AND MACKENROTH (1989), GLASHOFF AND SACHS (1977),
HACkBUSCH AND WILL (1984), KNOWLES (1982), LASIECKA (1980, 1984), MACK-
ENROTH (1982-83, 1987), MALANOWSKI (1981), TROELTZSCH (1987).

The first results, connected with the use of the penalty technique for control problems
are obtained by LioNs (1968) and BALAKRISHNAN (1968 A,B), for further applica-
tions see LIONS (1985). Penalization of the state equation permits to handle with
control and state variables as independent ones. In BERGOUNIOUX (1992, 1994), for
convex elliptic and parabolic control problems with state constraints, penalty meth-
ods have been used in order to prove the existence of Lagrange multipliers under
weak qualification hypothesises.

*Supported by the German Research Foundation (DFG).
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In all these investigations strong convexity of the objective functional was one of the
essential conditions.

The paper presented here deals with convex parabolic control problems without addi-
tional assumptions mentioned above. So, the problem may be non-uniquely solvable,
moreover, we don’t exclude that the set of optimal controls can be unbounded. Using
the scheme of multi-step regularization developed in KAPLAN AND TICHATSCHKE
(1994) for abstract convex variational problems, a partial proximal regularization
(w.r.t. the control only) of the family of penalized problems is performed. This per-
mits to handle with well-posed auxiliary problems and to ensure weak convergence
of their approximately determined solutions to an optimal process, as well as conver-
gence of the corresponding values of the objective functional to the optimal value of
the original problem.

For convex elliptic control problems an analogous approach has been realized in
HETTICH, KAPLAN AND TICHATSCHKE (1994, 1996). In the last two decades prox-
imal point technique is sucessfully developed for solving variational inequalities with
monotonous operators, including convex optimization problems and saddle-point
problems. ECKSTEIN AND BERTSEKAS (1992) have shown a relationship between
the proximal point method and the Douglas-Rachford splitting method, pointing out
new application fields, especially in mathematical physics. Nevertheless, besides the
papers mentioned here, we don’t know publications, where proximal point technique
was applied to control problems.

2. Formulation of the control problem

Let Q C R™ be a bounded domain with a boundary 8 of the class C?, Q be locally
situated on one side of 99, and

Q=0x]0,T], ©=00x]0,T].

In the sequel we use the following notation for functional spaces:
L,(0,T; Z) - space of functions with range in a Hilbert space Z, square integrable
on (0,7),

T 1/2
oo = | @)

| - llo.o — norm of an element in Ly (0, T Ly(Q2));
C([0,T); Z) - space of continuous functions on [0, 7] with range in Z,

lvllcqors;z) = mazo<i<r||v(t)ll z;

H*(©), HE(Q) - standard Sobolev spaces, Ly(€2) = H(Q), || - ||s,o — norm in H:(Q);
| llos.0 — norm in Ly (0, T; H5(S2)) for s > 1;
(-,-)q — inner product in Ly(€2);
X < H — continuous embedding of the space X into H.
We consider the parabolic equation
%y

(2.1) E(w,t) + Ay(z,t) = u(z,t) a. e inQ,
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(2.2) y(z,0) =01in Q,
(2.3) y(z,t)=0o0n X,
where the elliptic operator A is given by
Oy

(2.4) Z aij(z, )= | + ao(z,t)y,

7,7=1 8 8 Zj
with a;; € C%(Q), ag € C*(Q) such that for all (z,t) € @,£ € R” and some dy > 0
(2.5) ag(z,t) > 0 and Z aij(z, t)&:&; > dOZ €2

=1

For each u € U = Ly(0,T; Ly(€2)) Problem (2.1)—(2.3) is uniquely solvable, and its
solution g, belongs to

dy

(2.6) W={ycLy(0,T; H*(Q)NHMQ)) : = € Ly(0,T; Ly()), y(x,0)=0 in Q}

(27 mm=0mmww2

(see, for instance LIONS AND MAGENES (1968), vol. 1.). The space W endowed by
the norm
) 1/2
is a Hilbert space. Moreover, (ibid., Theorem 1.3.1)
W — C([0,T]; H5()),

and the operator 7 : Tu = y, is continuous as a mapping from Ls(0, T; L»(£2)) into
C([0,T]; H}(£2)) (see LioNS AND MAGENES (1968), vol. 2.).
In order to formulate the control problem we introduce the space

(28) ¥ = {y € Ls(0, T; HX(Q)) : % + Ay € Ly(0,T: Ly(92)), y(z,0) = 0 in 0}

which coincides algebraically with W: Indeed, regarding the smoothness of a;;, ag,
the inclusion W C Y is obvious, and the inclusion Y C W is a consequence of the
fact that y, € W for each u € U.

Using the inequality

lyllw <éllylly ¥y €,

which follows from the L,-estimates for the solutions of parabolic equations (see

LADYSHENSKAJA, SOLONNIKOV AND URAL’ZEWA (1968), Theorem 4.9.1), one can

easily show that the space Y with the norm

(29) Il = | % + 4y
. Ylly = i

0.Q
is a Hilbert space, too; moreover,

Y < C([o, T} Hi(%).
The approach suggested will be presented with the following model problem
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Problem (P) :
minimize J(u) = ||9.(T) — yalls o subject to v € Usa, 4u € G,

where U,y and G are convex and closed sets in the spaces Ly(0,T; L2(€)) and Y,
respectively; yg € Ly(Q) is a given function and it is supposed that {u €Us:yu €
G} #0.
Due to the continuity of the mapping
T : Lx(0,T; () — C([0,T]; Hy())

the functional J is continuous on Ly(0,T;L2(Q)). Therefore, if U,q is bounded,
Problem (P) is solvable, but in general, non-uniquely solvable. If U,, is unbounded,
it may happen that the set of optimal controls is empty or unbounded.

We introduce the space

==Y x L(0,T; Ly()),
endowed by the natural norm: For z = (y,u) with y € Y, u € Ly(0,T; Lo()),

2.10) Ielle = (lol2 + luli3e) ™"

3. Regularized penalty method (RP-method)

Method (Multi-step regularization)
Let {r;},{e}, {xi}, and {&;} be positive sequences with

) } €
lim—oors = 0, sup; 1; < 1, lim;oo— = 0, sup; x; < 2,
Xi
and u® € Uyg.
Step i: Given v* ! € Usa.
a) Set ut® ;= u*', s:=1
b) Given u*, let

(3.1) (7, 7°) = argmin{¥;,(y,u) : (y,u) € G x Una}
with
1 ||dy 2 X 2
_ oz ey _ Xi|, _ sl
39 Bulins) = WD)~ sll+ 7 [+ v =)+ e

Compute an approximation (y*°, u>*) € G x Uq of (§°, @) such that

(3.3) | ui) — @, a0, < =
= X
c) If ||lu* — u»*~Y|o,0 > &, set s := s+ 1 and repeat b).
Otherwise, set u’ := u™*, s(i) ;= 8,1 := i+ 1, and continue with Step (i + 1).
Of course, the stopping rule (3.3) is not yet practicable. But, as it will be shown
below, the functional ¥, is strongly convex on Z. This usually permits to satisfy

(3.3) by means of a stopping criterion of an algorithm, minimizing ¥; s on G X Ugg-
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4. Convergence of the RP-method

For shortness, in the sequel we will use the following abbreviations:

(4.1) z = (y,u), 2= (y*,u"), 74 = (g™, ") ete.
Let
5 1/2
(4.2) |z] = (H— + Ay —u| +lu 3,Q) .
0,Q

We start with some preliminary statements.

Lemma 4.1. On the space E relation (4.2) defines a new norm |-|, which is equivalent
to the norm || - ||=:

1
—=1|2 <z<\/_z—
T5lelle <1el < VBl

Proof. The right-sided inequality in (4 3) is obvious, and
0,Q

B 2 (dy 1| dy
= H\/;<dt+Ay> +3Hdt+A

1 1
g,Q + EHUH(Z)Q > ~||zl2

(4.3)

|2 +ullq

H +Ay—u

+ii
3

proves the left-sided inequality. 0O
Lemma 4.2. The functional ¥, ; is continuous and strongly conver on E.

Proof. Due to Lemma 4.1, continuity of ||y(T") — yallo,o on E ensures continuity of
U, ;. Now, let us prove strong convexity. To this end, we rewrite the functional as
follows:

) = [9(T) —uall + H cAy—u
0,Q
Xi dy Xi is—1]2
+ p + Ay —u 0Q+ 5 U — U “O’Q
1 x)\ ||dy 2
44 — T — |12 <___1) ay _
(4.4) 19(T) = yallg o + A + Ay —u o

Xi

7,51 2 T 'L s—1
) P COREO RE R TR
Because of r; < 1, x; < 2 the term in the square brackets is a quadratic functional with
a non-negative quadratic term in (y,u), hence, it is a convex functional. Therefore,

taking into account Lemma 4.1, ¥, , is strongly convex on the space = with the norm
I-lgor|-|. O

-+
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The following result is an analogon of Lemma 22.3 in KAPLAN AND TICHATSCHKE
(1994). Let Z be a Hilbert space with an inner product ({-,-)), and a norm ||| z; Z1
be a closed subspace of Z and P : Z — Z; be the orthogonal projection operator.
We consider the problem

(4.5) minimize ®(2) = a(z, z) — £(z) subject to z € K,

where a(-,-) is a continuous, symmetric and positive semi-definite bilinear form on
Z x Z, { is a linear, continuous functional on Z and K C Z is a convex, closed set.
Further, suppose that b(-,-) is a second symmetric bilinear form on Z x Z such that

(4.6) 0<b(z,2) <alzz2) for z € Z,

and, with some 3 > 0,

(4.7) b(z,2) + ||P2||% > Bl|2]|% for all z € Z.

By

(4.8) |21% = b(z, 2) + [|Pz]IZ

another norm is defined on Z, which is equivalent to || - ||z according to the obvious
relation

(M +Dll2lZ 2 |21Z = BlI=1Z

with M > sup,. IIJI(TZHEZJ

Lemma 4.3. For each a® € Z and

(4.9) ol = arg min {9(z) + 3||Pz— Pa’ll} :2 € K}

(x € (0,2] is kept fized) the following inequalities are true for all z € K:
2

(4.10) o' — 2|3 — |a° — 2|} < —||Pd" — Pa’||5 + ;[q’(z) — ®(a")]

and

(4.11) la' — 2|z < |a® — 2|z +n(2),

with

2(@() - 8] i o(2) > B(a)
n(z) =4 X .
0 otherwise
If, moreover, |[Pal — Pa’||z > 6 > n(2), then
2 2
1 <1g° — 7°(2) =6
(4.12) la' — 2|z < |a” — 2|z + 20— 21"

Now we come back to the control problem.
e The case of a bounded set U4
Assume there exists a point @ € U,y such that

s=Tu€ int G (inY).
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Lemma 4.4. Let (y*,u*) be an optimal process of Problem (P), v € (0, ) be an ar-
bitrary number. Suppose that ub*™* € U,y is arbitrarily chosen and ( , %) and
(%, u>*) are defined by (3.1) and (3.3) with this u>*'. Then there exist two con-
stants d(v) and dy, independent of i, s > 1, v, {¢}, {r:}, and {x:}, such that

(4.13) Ty, u?) = Ty, u) < d(w)ri ™
and
(4.14) ("%, u"®) = (v, u*)] < du,
with
dy 2
(415) Hw) = (@) =l + - |5 + Ay =
0,Q

Underline that |- | is defined by (4.2), and the controlling sequences {r;}, {€;}, and
{x:} are chosen according to the RP-method.
Proof. The existence of the points (7>, 4*®) and (y>*, u"®) is guaranteed by Lemma
4.2. Now, we introduce the following notation:

g = Ta, 2= (5,3%), 2(u)=(Tuu),
o = i | T~ wlly, e = max [2(3) = 2w,

_’LS

w*® = arg min,eqyuy,, - ’I)HE.

Note that Tmaz > Timin if {70 : u € Uy} NOG # . In case of §° ¢ G we define the
points

hie e {z() + 2 (37 = 2(3)) + A2 04N {8G x Uaa},
and (if A" # w*)
ke {z(ﬂ) +A (%i’s - wi’s) CAZ 0} N {hi’s +u (hi’s - wi’s) b= 0} .

Obviously, the points h** and k*° are uniquely determined, and

24,8 _wis Azs hzs
I — =@l A — (@ )”E
Due to the trivial implication —1 # § = =1=- P #, we obtain
24,8 o
sis _ pis . _ z - Z(U)Z'SE . 2is whs ~
= 15 — 2(@)]|z + |27 — w™| =
(4.16) < Tmas flghs _ gy
Tmin g

In the standard manner the Géteaux—differentiability of the functional

d .
Y+ ay—u e~

Xi 192
Z+ + X - g

0,Q
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in the space = with the norm |- | can be established. Regarding the definition
of (§°,@"°), we obtain by means of Proposition I1.2.2 in EKELAND AND TEMAM
(1976) that, for all (y,u) € G x U,

: 2
1w(T) ~ vallze — 7T — v,
2 T dgi”s(t) 1,8 =1,
+2 1250+ a0 -,
dy(t dif* (¢ : :
(4.17) W | py) —ut) ~ L0 Aoy +ar)) a
dt dt o

+X: /OT (ﬁi’s(t) _ ui,s—l(t) , u(t) — ’ai’s(t))ndt >0.

Setting y = y*, u = u* in (4.17), in view of % + Ay* — u* = 0 and the obvious
inequality
2

T 1| L s |
(4.18) ”u u HO,Q v v HO,Q
T —1,8 3,8—1 —1,8
>2 [ (@) - w0, ule) -5, db

one can conclude that

2 dgi’s —1.,8 —1,8 ? * 2 Xi * 3,8—1 2
(419) T+ AT = a| T = wllie + 5 e
Thus,

—i.8 7y 12 * Xi * is—1||2 1/2 s
w20) o, <(3) " (v @ -valda+Z fu = )]

Now, regarding the boundedness of Uy, ™ < 1, xi < 2, limi_,oo% = 0, and
condition (3.3), inequality (4.20) yields

—1,5 2,8

Y

(4.21)

Y<cl7 Y Y<Cl

(all the constants cy in this proof don’t depend on (4,s)). Estimate (4.14) follows
immediately from (4.21) and the equivalence of the norms || - ||z and | - |.
Due to (4.21) and

lyllw <ellylly forally €Y,

one gets
(4.22) T w < €2 yh® w < with ¢ = ¢cy.
Inequality (4.19) ensures also that
dy** s _ s 1/2
(4.23) 7 + Ag™® — ¥ < egry’”
0,Q
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Taking into account that i;tﬂ + A+ — 45° = 0, this leads to

(4.24) g — |, < eori”?
and, due to || — §%°||y = |2 — £*°||_ , we obtain
(4.25) e = 27| < eori”.

Because z"° € G x Uyq, the estimate

(4.26) | /2

wh® — %”” < csry
follows from (4.25) and from the definition of w"*.
Denote by
Zy={z=(Tu,u) : z€ G x Uy}
the set of feasible processes and
7= (ﬁi’s,ﬁi’s) = arg min{”ii’s —zl|z: z€ Zf}.

If 9* ¢ G and w®* # h**, then on account of h** € Z;, we obtain from (4.16), (4.25)
and (4.26) that

Zi,s _ Ei,s _ S —z s hzs _
. i T,
(4.27) < |z =22+ |F - nte _< (T’”‘”” + 1) csri’?,
= min

If §»* &€ G, but w™* = h**, estimate (4.27) follows from (4.25), (4.26) and Tyaz > Timin.
In case §** € G, the 1nequahty

(4.28) /2

; = 1
B ZhS o < Gsrj

Z

is an immediate consequence of (4.25). _
Inserting into relation (4.17) y = §*°, v = @"°, one gets

i a7 s 32
I50) - sl + 2 |+ e -

OYQ
702 — Nt _ mis N |
< (7@ =l + 37 = e = w
and hence,
2 Hdgis _ 2 _
N AT T < 70T = 5 (D) o [T + 5T — 2y
2 dt 0.0 HOQI 0,0
(4.29) s — b ,ai,s__ui,s—ln .
0,Q 0,Q

Because of Y < C([0, T}; H3(S2)), (4.22), (4.27), r; <1, x; < 2 and the boundedness
of Uyg, inequality (4.29) leads to

dﬂi »8

3/4
dt '

< eyr;
0,Q

_I_A-—’LS_ ,8

(4.30)
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Using (4.30) instead of (4.23), the estimates (4.24)-(4.26) can be improved (w.r.t. the
order) and we obtain

(4.31) 70— 5 < eardl?,
(4.32) ‘wi’s — 3 _< card/,

Thus, similar to (4.27), (4.28), the inequality

< (——-—Tmaz + 1) card/

Tmin

55,8 =i,8
S

z

can be established.

A multiple repetition of this operation (using in each step the current estimates)
leads to the conclusion that, with arbitrarily fixed v € (0, ;) and some constant c(v),
the estimates

77,8 ) )
(4.33) de_ + AP — || < ey,
dt 0.0
(4.34) #e—3|_< (—T’”‘” + 1) c()ri®
= Tmin

are valid uniformly w.r.t. (¢, s). Now, from the obvious equality

Ji(2) = Ji (2) = (D) —vallog - @i’s(T)—dez,Q+ ?i’s(T)—dez’Q
4,8 1 d~i,s 55,8 ~1,8 ?
- y’(T)—def,,Q—;l—,H L Ay - -

due to ||y*(T) — vallpo <
C([0,TT; Hy(52)), we get

7°(T) — yd”on’ (4.21), (4.34), and the embedding ¥ <

Ji(2) = Ji (3%°) < d(w)ri™,
with d(v) independent from (7, s), i.e. estimate (4.13) is true. O
Theorem 4.1. Assume that U,y is o bounded set and T4 € intG for some &t € U,g;
that v € (0,1) is a fived number and that constants d(v), di are defined according

to Lemma 4.4. Let the positive sequences {r;},{€&:}, {xi}, and {8;} in the RP-method
satisfy the conditions

o 1/2-v 00
T €
(4.35) Sup7; <1, Sup X <2, Zl-;lT < 00, 21;;— < o0
i= i =1 Xt

and

1-2v N\ 2 ) )
(4.36) L (zd(y)” - (51- - 9—) ) +v3L <o, &> 2.

1

Xi i %
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Then, for any starting point u® € U,q4, the RP-method is well-defined, i.e. s(i) < oo
for each i, and {ub*}, {y**} converge weakly in Lo(Q),Y to 4,y respectively, where
(9,4@) is an optimal process for Problem (P).

Proof. Let us assume that s(i) < oo for i =1,...,k—1. Then, starting in step i = k
with u*~1 = uF~15¢*-1) due to the definition of 5( ), (3.3) and (4.36), we conclude

“ak,s B uk,s—l” > Huk,s B uk,s—lH B ”uk,s _ gk
0,Q 0,Q 0,@
> 6k—€—k>0for1§s<s(k).
Xk
Together with inequality (4.13) and
1-2v 2
2d(v)E— — <5k - i’i) <0
Xk Xk
(cf. (4.36)), this implies
2
—ks _ lcs 1 = ®) _ k,s
(4.37) |a \|0Q > [Ji(2") = J(2)] for 1 < 5 < s(k).

Let 210 = (7u®,«®). Applying (4.13) and Lemma 4.3 with
Z=%8, Zi={z=(yu)€E: y=0}, &=,

Q
—~
R

s
S’

H
o)
<
—~~

~
:—/
w2

@+ 2 [+ ) - w0, 50+ ) 09

bz, %) = /0 ) (d—zgf)- + Ay(t) — ult) did(tﬁ + Aj(t) — zl(t))ﬂ dt

2z) =2W(T),ya)q, K =G XU, a® =21 y=x and §=6; — —;ﬁ,
k

we obtain from (4.12) and (4.14)

1 1 2v 2
_ <
o, 2d(v ) ™ (6k Xk) for 1 < s < s(k).

Using (3.3), (4.3) and (4.36), inequality (4.38) yields

(4.38) |zb -2

k,s—1 _

<|z

(4.39) ‘zk,s — = ‘zk,s—l o

z
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Inequality (4.39) proves that s(k) < oo, because the middle term in (4.39) is inde-
pendend from s.
Now, for s = s(k), the use of Lemma 4.3 with the same data as above, leads to

1-2v
‘Zk’s(k) -2 < [zk’s(k)_l — 2*| 44| 2d(v) & ’
Xk
hence,
1-2v
(4.40) ‘zk’s(k) -2 < |zk’s(k)_1 — 2"+ 4 Qd(V)Tk + \/56_19
Xk Xk

Taking into account that the finiteness of s(1) can be proved quite analogously, we
infer that

5(1) < oo for each i,

and the inequalities (4.39) and (4.40) are valid for each k.

In view of (4.39), (4.40) and (4.35), Lemma 2.2.2 from POLYAK (1987) ensures the
convergence of the sequence {|2%* — 2*|}, and with regard to (3.3), (4.3) and the last
inequality in (4.35), the sequence {|z%* — z*|} converges to the same limit.

Suppose that {z%°}, with s > 0 for each k, converges weakly to Z = (7,@) € E.
Due to (4.34), (4.35), {Ei’“’s’“} converges weakly to Z, too. Observing the convexity

and the closedness of Z; and that {Ei’“’s’“} C Zy, we conclude that z € Z;.
But Lemma 4.3 yields also
7,8 «|? 2 2 * 558

oo ol < 2 a5

2 i,5—1 _ _*

z

Z

z

and by definition of J; (cf (4.15))

. . 2
(=) = [W*(T) = vallie = T, Ji(2) 2 |7(T) — v o

hence,

. 2
Zhs _ 2*

g,5—1 _  _*

zZ

2 2 * —1,8 2
— | <= [7) - 7@ o)
Due to the convexity and the continuity (in Y), the functional ||y(T) — yd”?m is
weakly lower semi-continuous. Taking limit in the last inequality w.r.t. the subse-

quence {z****}, we obtain
* = 2
J(w") 2 |H(T) — yallo g »
hence, Z is an optimal process. Finally, Lemma 4.1 in OPIAL (1967) ensures weak
convergence of both {#*} and {2} toZ€ E. [
e The case of unbounded set U,

Now, we formulate convergence results for the case of an unbounded set U,; and
G =Y. Hereby solvability of Problem (P) is assumed. Let us choose

e 2 |y*(T) - yd||079, Pis—1 > 0.
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Let
(4.41) vl e{ue Uy & lu—ulog < pis—i}

be arbitrarily fixed, where 2* = (y*,u*) is an optimal process. Suppose that the
points (7>, @>°) and (y*°,u>*) are defined by (3.1) and (3.3) with this u®*~1.

Lemma 4.5. Let the sequences {r;},{e;},{x:} be chosen according to the RP-method
andv € (0, %) be an arbitrary number. Then there exists a constant d—(u), independent
fromi, s >1, {r;},{&}, {x;} and v~ in (4.41), such that

(4.42) Ti(y*,ut) — i (77, 87°) < d(v) (co + pis1)’ i

Theorem 4.2. Let u® € Uy, 240 = (T, u%). With py > ||210 — 2*|| the sequence
{p:} let be defined recursively by

2(2 —v i
(4.43) Pit1 = p; + X(V) (co+ pi) 7‘1-1/2 + \/gi—

2

Moreover, assume that the controlling parameters in the RP-method satisfy the con-
ditions (4.35) and, for each i, let

Pi i i i

1-2v \2 . )
(4.44) 2i (2J(y) (co+ pi)* T"X - (51- - &> ) + \/§;— <0, &> 6—

Then, applying the RP-method to Problem (P) with G =Y, one gets s(i) < oo for
each i, and {u**}, {y**} converge weakly in L(Q),Y to @, § respectively, where (g, )
is an optimal process for Problem (P).

Note that, due to (4.35) and Lemma 2.2.2 in PoLYAK (1987), the sequence {p;} is
convergent.

The conditions of the Theorems 4.1 and 4.2 permit a slow change of the controlling
parameters €;, 7, and x; : For instance, it is possible to take

0<x<x <2 and 7;=¢}; ¢ =g} with arbitrary g¢1,¢, € (0,1),
and then to choose 8; according to (4.36) or (4.43), (4.44). However, the calculation

of d(v) or d(v) may be difficult.

There are no principal difficulties to extend this consideration to other objective
functions of the form J(u) = ||Cy, — yal|%;, where H is a Hilbert space (on Q, Q or
Y),CeL(Y,H)and yq € H.
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ABSTRACT. J.-L. Lions proved several observability theorems for coupled linear distributed
systems provided the coupling parameters are small enough. It remained an open question
whether the assumption on the smallness of these parameters is necessary for the validity of
the results. Using nonharmonic analysis the first two authors proved recently that in some
cases the observability holds in fact for almost all values of the parameters if the underlying
domain is an open ball. Combining this method with a compactness-uniqueness method
developed by the third author we extend these results for all sufficiently regular bounded
domains.
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1. Introduction

Let © be a bounded open domain of class C* in R®. We shall denote by v the
outward unit normal vector to its boundary I". Given two real numbers a and b,
consider the following system:

ul —Aug +bug=f; in RxQ,

uy + A%ug+au; = f, in RxQ,
(1.1) U =uy=~Auy=0 on RxT,

w1(0) =up and wj(0)=wup in Q,

us(0) =ugp and uh(0) =wugy; in Q.

One can prove by standard methods that for any given functions f; € L (R; L%(2)),
f2 € LL.(R; H71(Q)), and initial data

loc
(uw,ull,U20,U21) S Hé(Q) X L2(Q) X H&(Q) X HEI(Q),

The first author is grateful to the organisers of the conference for their invitation and to the
INRIA Lorraine (Projet Numath) for supporting his travel expenses.

The third author is grateful to the organisers of the conference for their invitation. He was
supported by DGICYT (Spain) (PB93-1203) and the European Union (CHRX-CT94-0471).
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this problem has a unique weak solution satisfying
uy € C(R; Hy(Q)) N CH(R; L*(€2))
and
uy € C(R; HY (Q)) N CHR; H™H((Y)).
We define the initial energy of the solutions by the formula
By = lluollsqy + lunllZagy + lluzolifryy + lluz -2 0.

Let us first assume that the system (1.1) is uncoupled, i.e. a = b = 0. Then it
follows from some results of [11], [12] (p. 44, théoréme 4.1, p. 287, théoréme 4.1) that
for every bounded interval I containing 0 the solutions of (1.1) satisfy the estimates

(1.2) /I/F(ayul)Q-F(@umy dl dt < c1Eo+ el fillFeqrzon+ el folle@m-r )

with a constant ¢;. Here and in the sequel all constants are assumed to be independent
of the particular choice of the initjal data.

Now fix two open subsets T'j, 'y of T' and a positive number Ty such that for any
bounded intervals Ir, I of length |I;] > Tp and |I;| > 0, in case a = b = 0 and
f1 = f» = 0 the solutions of (1.1) also satisfy the inverse inequalities

2 2
(1.3) Bo<e /1 /F (0, dI di+ ¢y /1 /F (Oua)? dT dt

with a suitable constant c¢s.
The purpose of this paper is to show that then analogous estimates hold for the
coupled system, too, at least for almost all choices of the coupling parameters a and b.

Remarks. According to earlier results of Lions, Zuazua and Komornik [11], [12] (p.
55, théoréme 5.1, p. 296, théoréme 4.3), [13] (pp. 474-478), [5] (p. 82, theorem 6.11)
on the wave equation and on Petrovsky systems, the estimates (1.3) are satisfied for
example if there exists an open ball B(z; R;) containing 2 and a point zz € R™ such
that

(x—z) -v() <0 on I'—T4y,
(x —z9) - v(z) <0 on I —Ty,
and if the lengths of I, I, satisfy |I;| > 2R; and |I5| > 0. Let us emphasize the fact

that I, can be arbitrarily small: this is due to the infinite propagation speed for the
Petrovsky system.

If Q is of class C*°, then much weaker sufficient conditions were obtained by Bardos,
Lebeau and Rauch [1], [2], [10]: every ray of geometric optics in {2 meets I'; x Iy at
some nondiffractive point, and there exists a bounded interval I3, possibly longer than
I,, such that every ray of geometric optics in €2 meets I'y X I; at some nondifractive
point. Note again that there is no assumption on the length of I5: it can be arbitrarily
small.

See also Burq [3] for an extension of the results of [1] and [2] to the case where €
is only of class C3.

Our main result is the
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Theorem 1.1. (a) Given two real numbers a,b arbitrarily and a bounded interval I
containing 0, in case fi = fo = 0 the solutions of (1.1) satisfy the estimates

(1.4) /I /F (B,u1)? + (Byu)? dT dt < e3Fg

with some constant cs.

(b) For almost all choices of the pair (a,b) € R?, if I, I are two bounded intervals
satisfying |I1| > 2R; and |Iy| > 0, then in case fi = fo = 0 the solutions of (1.1)
satisfy the estimates

(1.5) By < / / (8yu1)? dT dt + ¢4 / / (8yus)? dT dt
L JI Iz JTo
with a suitable constant cy.

Remark. In the special case where 2 is a ball, theorem 1.1 was proved earlier in [7],
[8] by a direct computation (leading to explicit constants). The proof given below is
different: it is based on a compactness-uniqueness method introduced in [13]. While
it is indirect and so the constants are not explicit, it works for all sufficiently regular
bounded domains.

Applying the duality method from [4] or the Hilbert Uniqueness Method from
[11], [12] one can deduce from theorem 1.1 an exact boundary controllability result
concerning the system

,

vyl — Ay +ay2=0 in (0,T) xQ,
Y+ A%y +by; =0 in (0,T) x 9,
y1=v; on (0,7)xT,

yo=0and Aya=v, on (0,7)xT,
y1(0)=y10 and y(0)=yu in Q,
(32(0) =y20 and 95(0) =yxn in Q.

Let us introduce for brevity the Hilbert space
H=L*Q) x HYN) x H}() x H ().

Theorem 1.2. Fiz positive numbers 0 < Ty < Ty < T such thatT > Ty, and let 'y, Iy
be as above. For almost all pairs (a,b) € R? the problem (1.6) is ezactly controllable
in the following sense: Given »

(Y10, 11, Y20, Y21) € H and (210, 211, 220, 201) € H

arbitrarily, there exist control functions vy, vy € L2(0,T; L*(T")) such that vy vanishes
outside of (0,T) x I'1, vy vanishes outside of (T1,T3) x 'y, and the solution of (1.6)
satisfies

n(T) =210, W) =21 and y(T)=20, ¥T)=2n nQ.
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Next, applying another general method developed in [6], one can deduce from
theorem 1.1 a uniform boundary stabilization result concerning the system

¥ —Ayi+ay =0 in (0,00) X Q,
Yl + Ay, +by; =0 in (0,00) X Q,
yp=v on (0,00)xT,

yo=0and Ay =v, on (0,00) xT,
y1(0) =90 and 3 (0)=yn n £
¥2(0) =yo0 and 33(0) =yxn n Q.

Theorem 1.3. Fiz an (arbitrarily large) positive number w, and let T'y, Ty be as above.
For almost all pairs (a,b) € R? there exist two bounded linear maps

P:H—-I*Q) and Q:H— Hy(Q)
and a positive constant M such that, setting
vi =8, P(y1, 41, ¥2,%)  and v2=0,Q(1, Y1, 92, 2)
the problem (1.7) is well-posed for all
(Y10, Y11, Y20, Y1) € H,
and its solutions satisfy the estimates
Il (y1, 91, 92, ) D)l < Me™*|(y10, Y115 Y20, Y1) ||

forallt > 0.

Since both theorems 1.2 and 1.3 can be obtained from theorem 1.1 in a standard
way, we shall only prove theorem 1.1 below.

2. Proof of Theorem 1.1

First we prove the inequality (1.4). Applying (1.2) with f; = —buy and fo = —aus
we obtain the estimate

||6Vu1||%2(I;L2(F)) + |8oual| T2 2y < C(Eo + [luzl|Fs 20y + ||U1||%1(1;H—1(n)))'
By the well-posedness of the problem (1.1) we have
”Ul”%l(I;Hg(Q)) + ”’u’?”%l(I;Hé(Q)) < cEp
and therefore
18uua |22z, 22(ry) + 1802122t 2y < cBos

as stated.
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Turning to the proof of the inequality (1.5), let us write the solution u of (1.1) as
u = v + w where v and w are solutions of the following two problems:
vy — Ay = —bus in R xQ,
vy + A%y = —au; in RxQ,
m=v=Avy,=0 on RxT,
v1(0) = 1(0) = v2(0) =v5(0) =0 in €,

2.1)

wi —Aw; =0 in RxQ,

wi + A%we =0 in RxQ,

(2.2) wy=ws=Awy=0 on RxT,

wi1(0) =up and wi(0)=wupn in
(w2(0) =uz0 and wy(0) =ux; in Q.

Applying the estimates (1.3) to the uncoupled system (2.2) we obtain the inequality
Ey < cllBywn |3z, 2y + cll@owal| Tz, rar,y),
whence
(2'3) Ep < C”allulll%z(h;Lz(Fl)) + c”aVu2”%2(Iz;L2(F2)) i
with
R= |]3VU1||?:2(11;L2(PI)) + ||6VU2||%2(12;L2(1‘2))'

Next applying the estimates (1.2) to the system (2.1) with a bounded interval I
containing 0 , I; and I, we obtain the inequality

R < clluallFa 20y + cllwalliagm-1ay)-
Using the well-posedness of problem (1.1) and the compactness of the embeddings
HY(Q) c LA(Q) and H}(Q) c H~Y(Q), this implies that R is compact with respect
to E().

Due to this compactness we can apply a method developed in [13] for the proof of -
the inverse inequality (1.5). Using (2.3) first we reduce our problem to the following
uniqueness property: if a solution w of (2.2) satisfies 8,w; =0on Ty xI; and J,we; =0
on I's x I, then in fact all initial data vanish and therefore wy, wy vanish identically.
Next, proceeding always as in [13], we reduce this to the following simpler uniqueness
property: if for some functions w;,ws € H3(Q) and for some complex number A we
have

—Aw; +bwy = dwy, in Q,
(2.4) A?wy +aw; = Awy in Q,

wy=wy=Awy; =0 on T
and if

(2.5) {8,101:0 on I7,

S,wy =0 on Ty,

then in fact w; and w, vanish identically in Q.
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Now we shall prove that this last uniqueness property holds for almost all choices
of the pair (a,b). Let us fix an orthonormal basis 21, zp,... in L*(9), consisting of
eigenfunctions of —A in Hg(f):

—Azp, =Yp2zp, in
z,=0 on T
O<m<ys -,
Yp, — 00.

For every pair of integers (k,!) with v, # 7, set

I ke’
Y+ TN

Akl

and consider the countable set
Co={-(-w?: k=12 3YU{(n— M) (V2 = Meg) Yk F 0t

Since the set {(a,b) € R? : ab € C} is the countable union of real analytic curves
in R2, we have ab ¢ C for almost all pairs (a,b) € R?. Henceforth we assume that
ab ¢ C and we shall prove the above mentioned uniqueness property.

First we show that every eigenvector W = (wj, wp) of (2.4) has the form W = 8z
for some 8 € C2 and for some nonzero eigenfunction of —A in Hg(9):

{—Az='yz in €

2.6
( ) z=0 on T.

For this first we seek eigenvectors of the form W = Bz for every fixed k > 1.
Substituting into (2.4) we obtain for 8 = (61, fz) the linear system

(e — A)B1 + 062 = 0,
abi+ (7 — A)B2 =0.

Since by our assumption ab # —(y — v)? its determinant has two different roots
), it follows that the problem (2.4) has two linearly independent eigenvectors of the
form Wo_1 = Pop—12r and Woy = Bor2s.

Denoting by Z the linear hull of 21, 22, . . ., it follows that W1, Wy, ... span Z X Z,
which is dense in L2(Q) x L2(£2). We have thus found a complete linearly independent
sequence of eigenvectors of the problem (2.4). It can be shown that this sequence is
in fact a Riesz basis, see [9].

Let us denote by Aj, Ag, ... the eigenvalues associated with Wy, W, ... If
they are pairwise distinct, then the problem (2.4) has no other eigenvectors than the
multiples of the vectors Wy. If some of these eigenvalues coincide, then all linear
combinations of the corresponding W;s are also eigenvectors of (2.4) with the same
eigenvalue. Now it follows from our assumptions on ab that Ay = N implies v, = v,
and therefore every eigenvector W = (wy,ws) of (2.4) has the form W = fz for
some 3 € C? and for some nonzero function satisfying (2.6). Indeed, if y, # v but
A: = A; =: ), then X solves both characteristic equations

(= NE =N —ab=0 and (n—MN(—A)—ab=0.
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Hence an easy computation gives that A = Ay, and therefore ab € C, contrary to
our assumptions.

We have thus shown that under the assumption ab ¢ C every eigenvector W =
(wy,w2) of (2.4) has the form (0,2, 22) for some complex numbers 3, B, and for
some nonzero function satisfying (2.6).

Now using (2.5) and applying Carleman’s uniqueness theorem we conclude that
B1z = [oz=01n ), i.e. W =0 in €, as stated.

Remark. Note that the proof of the theorem gives more than stated: the set of
exceptional matrixes (c;;) is not only of measure zero, but a union of countably
many real analytic curves.
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ABSTRACT. We consider a planar graph representative of the reference configuration of a
network of elastic prestretched strings coupled at the vertices of that graph. Some or all
of the vertices may carry a point mass, and at those nodes dry friction on the plane may
occur. We briefly describe the model and some results on well-posedness and control of such
systems obtained in the literature. We then introduce a dynamic domain decomposition
based on a Steklov-Poincaré-type operator. The analysis is given for the time-domain and
the frequency-domain. Optimal control and problems of exact controllability are formulated
and investigated in terms of the decoupling procedure.
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1. Introduction

We consider a network of dynamic elastic strings as in [10], [9], [13]. Let G =
(V, E) be a planar connected graph with vertices V,§V = n, and edges E,{E = n,.
Each edge is representative of a (possibly prestrechted) linear string in its reference
configuration. We label nodes v; by capital letters and edges by lower case letters.
At a typical node v; we have d(v;) incident edges, the indices of which we label
1 € &5. To each i € £; we assign ¢;7 := —1 if the edge i starts at vy and ¢;; := 1
else. We denote by z;; the number [; if ¢, = 1, 0 if ¢;; = —1. We introduce
vi={v e V]d() > 1}, 8V = V\ V as multiple nodes and simple nodes, respectively.
Let

ri(z, t) = us(x, t)e; + wy(x, t)e;
denote the deformation of the i-th string, where u;, w;, €;, e denote the longitudinal,
vertical displacement, and the unit vectors along the undeflected centerline and its
orthogonal complement, respectively.

We signify nodes where Dirichlet conditions hold by Vp; for simplicity of notation
we impose Vp C 9V. Correspondingly, Neumann-nodes are denoted by Vy C V.
Let K; denote the local stiffness matrix. Then we have the systems of equations
governing the motion of the entire network.

(11) Tz = Kﬂ'gl, i=1: Ne, L; € (O, ll), te (O,T)
(12) T‘d((EdD) =0,vpeVp,deép, te (O,T)

Preceding Page Blank
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(L3) ri(3i7) = 3(250), Vi, € E5,05 €V

(1.4) S e Kirl(@is) = —mufi(zas) + f7, vs €V UV, € (0,T)
€€y

(15) 'rz-(mi,O) = T‘io(flii), ’I”Z(I‘Z,O) = m(xi), x; € (0, ll), 1=1:n,.

While (1.1) is the obvious wave equation for the i-th string with homogeneous Dirich-
let conditions (1.2), equation (1.3) gives the continuity of displacements accross the
joint v;. Equation (1.4) is the balance of forces at the joint v including the possi-
bility of an additional mass m; and an external force f; there. Position (1.5) finally
represents the initial conditions.

System (1.1)-(1.5) has been shown to be wellposed in

Ne Ne
H:=]]L:0,1), V={re]] H'Y(0,1;)|r satisfies (1.2), (1.3)}
i=1 i=1
with the typical setup V CC H CC V*, and my; = 0 V;. We note that all spaces
L, H! etc. appearing in this paper are to be considered as spaces of functions into
the plane.

Theorem 1.1. [9] Let my =0V J, then

\4 ('f‘o,’l‘l) eV x H, f € H LQ(O,T)E”T :
J=1

r e C(0,T,V)NCH0,T, H)NnC*(0,T,V*) ,
r satisfying (1.1)-(1.5) in a natural weak sense.

Remark 1.2. More can be said in terms of regularity, when masses at joints are
present. See Section 3 below. In case of nonhomogeneous Dirichlet-data, wellposed-
ness for the system with masses my # 0 has been obtained in [15].

Remark 1.3. Problems of evact/approzimate controllability have been discussed in
detail in [9]) where also 8-d-networks have been considered. See also (9], [10].

Remark 1.4. The balance of forces at multiple nodes (1.4) can be extended in various
ways, in order to account for nonlinear phenomena as e.g. dry friction on the plane
or elastic and rigid obstacles, rigid bars between joints ect.. We do not have sufficient
space to discuss these models here in detail. To illustrate the possibility of treating
such phenomena in the context of the subsequent domain decomposition, we provide
a model of dry friction.

(1.6) Z EiJKir,E(xiJ) + mJ'Fi(.’I?iJ) € —/JJ6|7'~2-(1:U)|, vy E‘; UWVn, t € (O,T).
€€y
In a more refined model we have

(1.7) Z e Kiri(zig) =1 Fy = —myts(xig) — p3p7,

€€y

where

ps(t) = |ZEZ§§|’ if Fi(zig) #0
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ge[-EL B v =0, Fi(t) #£0
Hy My

ps(t) =0 else,

and p%, p5 are adhesive and shear frictional moduli. See Panagiotopoulos [12] for
dry friction models and results on well-posedness for single-element systems. The
subsequent analysis will show that it is possible to reduce the discontinuous part of
the PDE-problem above to o finite dimensional one.

2. A dynamic Steklov-Poincaré-Operator for networks

We first consider the local Dirichlet problems for each individual edge along e;

(2.1) @i = Ky, (0,5) x (0,T)
(2.2) wi(zig) = A5+ rio(zig), willi — zi5) = A + 10l — 245), (0,7)
(2.3) ¢i(z,0) = rip(z), @iz, 0) = rar(z), (0,4) .

Obviously, ¢; can be written as a superposition
(24) 901(11/', t7 T30, 741, AJa )\M) = 1/11'(937 t: O, Oa >\Ja >\M) + nz(xa t, T30, Ti1, O; O) -

Lemma 2.1. Let (ro,m1) € V X H, Ap, Ay € H3_(0,T) (i.e. Xy, A € {HY0,T)]
M0) = 0). Then for each i there exists a unique weak solution p; to (2.1)-(2.4)
satisfying

@; € C(0,T, H*(0,1,)) n C*(0,T, L*(0, 1)) .

Proof. The proof is standard. Nevertheless, we need a precise representation any-
way. In particular, we will use ¥;(z,t,0,0, \s, A\yr) below. n;(z,,7:0,7:1,0,0) can be
constructed, say, by a d’Alembert-Ansatz. We focus on ¢, and use a Fourier-Ansatz.

Si

where s; > 1 represents the amount of stretching. We have 1; =: vle; + ¥/Ye;, hence
(2.1)~(2.4) decouples into

(25) o= Py, P o= Gy
(2.6)  Yizig) = N, Yi(ir) = Ay

plus zero initial conditions, where p? = k;, ¢ = ki(1 — 1/s;). Hence, solving the
in-plane problem (2.1)—(2.4) comes down to solving scalar problems (2.5)—(2.7). We
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express !, 9?7 as follows
Y= oty =24+ |
1 1
Zﬁ(.’l?, t) = l—(lz — L7+ eux))\f](t) + —l—.(xu - Ei‘].’ll')/\gv[(t)

1
—(xu — EiJZL‘)XX/I(t) .

l;
(2.8) i o= pi) -, §r=g(y) — &

(2.9) Yi(zig) = 0=yl — i), vy (xi7) = 0 =y (li — zs)
4+ zero initial conditions.

1
2 (z,t) = l_(li — zig + €5T)A;(E) +

i

T,

By standard calculations we obtain, with /,Lﬁj =

1/2

2 l; jm v
21 / Y-8 (_> o5 ( ‘ ) :
(2.10) yk(z, 1) ]E o sin(u;)'/?(t — ) I € i cos L Zig ) A5(8)

v i o N2 i
+ <l_z) euj—ﬂ cos (—Zi—(li — x,J)) )\M(s)} ds - (Z) sin —l:w

If we integrate (2.10) by parts and approximate Hy_(0,T) by H§ (0,T), the asymp-
totic behaviour of the Fourier coefficients implies that 1! have the properties required.
The same obviously holds for ¥7. O

Lemma 2.2. Let ;i =1,... ,n. be as in Lemma 2.1. Then p;{z,t) = ri(z,t), where
rii=1,...,ne solve (1.1)-(1.5) if and only if

(2.11) Z GiJKZ‘QD,Ii(.TiJ) + mJS\‘] = f; VJ E‘} UVy .
€€y

Proof. If ¢; = r; then (2.11) is obvious. Conversely, since As(t) = @ilzig,t), condi-
tion (2.11) is just (1.4) with ¢;. By construction
©i(zig) = rio(®is) + Ay = reo(@rs) + As = r(@rs)

since 1o € V. For Dirichlet nodes vp we have Ap = 0. The argument is applied to
strong solutions and then to mild solutions. O

We return to (2.10) and, consequently, require A € HZ_ for the time being. We
obtain

W) (@i, t) = €y Z

z j= 119z’/TJ

S [ sinG) 20— 5) {R() — (~17R(s)} ds

2 °°l /2o { & o
i ot —s 1A, —s);ds
g gy SO {5 9) = (1Rt =)

2 x l (k+1)i/p:
= €y - > = Z/ Gi;(s)ds ,

zpzk 07T]k —0 kli/pi
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where m; = argming{(k + 1)/;/p; > t} and the integrand is put to zero for s €
[t, (m¢ + 1)I;/p;]. Hence,

2 &
(2.12) W) iz, t) =G Z / Gi(T + kl;/p;)dr

zpz 7‘7 k=0

sin (plﬂT (T + k}%)) = sin (piZ_UT + kwj) = (—1)kj sin (leﬂ-lT) ,

and hence (2.12) gives

> i li/pi T
(2.13) ()'(@ist) = euzz LS kJ/ P in (pllvlrJT)

Jko )

: {)\f,(t — 7 —kli/pi) — (=1 (¢ — 7 — kli/py)} dr .

Di /li/”i (pz ) 1 A
— t dt = -1y =
l; Jo sin l; 7TJ( ) i’
?_i Li/pi _ & ) ._ (pZ ) 1
l; /0 (1 I t) s I at = g’

and hence (2.13) can be written as

1 me li/pi 20, 1/2
W) (@ t) = —es D / Z{ (ﬁ> :
bi , o 0 =1 L

li/pi . 1/2 ol
/ ’ (1 - &t) (pzﬂ'] ) dt (2;01) sin 27 7
0 l li lz lz

ANt —T —kl/p) +
A2 i p, : 1/2 i
()" [ B (2020)a (22 o (2227)
li 0 lz li lz li

Aot —7— kli/p,-)} dr

lz/pt 21: 1/2 li/Pi i i ]
o £ [OEC () [ ()

kOd

.(%ﬁ)lﬂ- (B 30—~ kisfp) -

(o)™ [ (=) § o) (P an (22),

Nyt —7—kly/p) dr

Now,

Furthermore
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1 [m/21
= e > {3 - 20k + D)li/pi) + Nyt — 2k 1/p)
z k=0

405/l (AS(t — 2(k + D)li/ps) — Nyt — 2k 1/p;)) }
[(ms—1)/2]
—%eu > {A’ (t — (2k + 3);/pi + Moy (t — (2k + 1)1i/p;)
K4 k=0

i /(N (8 — (2k + 3)li/ps) — Nyt — 2k + 1)li/p)) }

RLS LN 1
W) (zig,t) = D eu{ AL(t) + S At —2(k+Dl/ps } - feiJ)\’J(t)

k=0

i k=0

1 [(m¢—1)/2] . 1 .
—EEU 2 Z >‘M(t — (2k + 1)ll/p1) + er/\M(t) .

Now, () (zis,t) = eu%)\lJ( 1) — EZJ)\l (t), and hence

(WY (251, t) —EZJ; { A1) —i-ZZ)\l t—2(k+1)/p:)
(2.14) ' k=0

mo
23 Nyt — @k +1)l/pi) }

k=0
with me, myg, denoting the even and odd boundary for the index k obtained from the
previous formula.

A similar expression holds for the vertlcal component with [ replaced with v. Wlth

the definitions P,X := pMe;+ A%, (DIN)(t) := p N (E—Tli/p)ei+ g\ (=7l a:)e;-
we can write (1.4) with ¢; replacing 7; a8

myhs(t) + (ZP)AJ +2ZZ DI*D3)()

i€Ey k=01i€€y
mo .
-2 > (DPFF ) (@) = £1(8) = D e Kimli(zig, t) -

k=0ic&; €€y

Here v;s is adjacent to vy and belongs to the incident edge i. Note that (2.15)
also applies to a simple Neumann-node v; where d(v;) = 1. We may define A :=
()\J, )\N, . )T and

S(A) = (Z €ir K (2:7,1,0,0, A5, Ainr) + mJ.).\J(t)) )
J=1:N

€€y

(2.15) S:[IH;_(0,T) — [[L*0,T),
J J

D(S) ={A e [[ H;_(0,T)|\; € H;_(0,T) formy #0} .
J
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Then S can be interpreted as a dynamic Steklov-Poincaré-Operator for the network.
Indeed, for time independent problems, or those obtained by some integral trans-
formation, S is identical with a Steklov-Poincaré operator. However, even in the
static case, such operators, in the case of networks of any dimension, do not seem
to have received attention yet. The case of coupled membranes is the subject of
current research. See Lagnese [8], where a domain decomposition is used implicitly.
Its importance is due to the following theorem

Theorem 2.3. Given (ro,m) €V x H, f € [1;L%(0,T). If A solves S(A) = F with

F= (fJ =Y e Kimi(@ig, t, a0, i1, 0, 0)) )
J=1:N

€€y

then the corresponding local solutions p; of Lemma 2.1 constitute a solution of (1.1)-
(1.5) according to Lemma 2.2.

The entire calculus leading to (2.15) was done to give an explicit representation of
S defined by (2.15).

Therefore, in order to solve problem (1.1)-(1.5), we have to solve the differential-
delay system of second order in time (2.15) together with trivial initial histories
Aj(=s) =0V s>0VJ e V. Once that is done step by step, according to the
individual delays I;/p;, l;/¢;, the solutions ¢; can be computed in parallel. Also, each
individual problem can be solved in parallel using waveform relaxation techniques,
see Burrage [1].

Remark 2.4. If dry friction occurs at a joint vy as explained in Remark 1.4, one has
to either add a mazimal monotone operator to S, or use the notation of variational
inequalities in order to extend existence and unigueness to the system with dry fric-
tion. In particular, using the method of steps, one obtains a sequence of ordinary
differential equations with discontinuous forcing term. The latter systems can then
be treated step-by-step in the framework of DAE’s (differential-algebraic equations) of
index 2. We have implemented this strategy using RADAUS of Hairer and Wanner
(see [4] as a base reference) and projection methods. We have applied this also to
beam networks with rotational dry friction between “pin-joints”. We refer also to the
work of Glowinski et.al. [3] (for matriz problems), where the time is first discretized in
order to obtain an “elliptic” problem together with o projection accounting for the dry
friction. To apply their approach to elastic networks, using the domain decomposition
above, is the subject of current research.

3. Wellposedness and regularity of solutions

It is well-known that the solution 7;(z, t, 740,741, 0,0) of (2.1)-(2.3) has the regular-
ity
n: € C(0,T, H*(0,1;)) N C*(0, T, L*(0,1;)) .
for ro; € H(0,1;), m; € L*(0,1;). In fact, one verifies that

n;(xi‘h 5 7405 T'ils Oa O) < L2(0, T) .



198 Dynamic Domain Decomposition of Networks

Lemma 3.1. Given (ro,m1) € V x H, f; € L*(0,T) V J €V UVy, there ezists a
unique solution of (2.15) with A\;(—s) = 0V s >0, J € V. The regularity of A;(t)
depends on the presence of a mass my at node v;:

i) if my=0, then A\;€ H'(0,T), As(0)=0
@) if my#0, then As€ H*0,T), As(0) =A;(0)=0.

Proof. The right hand side of (2.15) is in L*(0,T). Let oy = Iﬁ;{l(lz/pl, l:/q;), then
solve (2.15) on (0, &) uniquely for A;. Note that because of A;(—s) =0V s > 0, the
sums in (2.15) are empty. Now );(t) satisfies i), i) for m; = 0, m; # 0, respectively.
We do this for all vertices and obtain A on (0, ay). By the same procedure, we obtain
the solution A on (0, 7)) if we use the solutions obtained in the previous step to update
the history part in (2.15). This is the classical method of steps for differential delay
systems, see {1]. O

Corollary 3.2. It is immediate from Lemma 3.1 that waves passing a node with nonzero
mass my or waves generated at such a node by applying forces f;, have one more de-
gree of regularity in the edge incident ot v,.

Theorem 3.3. Let (ro,m) €V x H, f; € L*(0,T)V J €V UVy. Then there ezists a
unique mild solution v of (1.1)-(1.5), satisfying

re (0, T,V)NCY(0,T,H) .

Proof. The first part is obvious from Lemma 3.1 and Theorem 2.3. The second part
follows from Corollary 3.2. O

Remark 3.4. We illustrate the smoothing-property of the joint-masses by an exem-
plaric situation. There are many interesting features concerning reqularity issues
when masses are present at joints. We don’t have sufficient space to go into details.
See, however, Willé and Baker [16], for the propagation of singularities in DDEs
and [5], [15] for two-span strings.

Ifrio,mi1 # 0 on a set I of edges and ry9 = 13 = 0 on E\I and m; #0 Vvyel
such that adj(vy) N (E\I) # 0. Then on E\I the restrictions r; of r satisfy ri €
C(0,T, H*(0,1;)) N C*(0,T, H'(0,1;) N C*(0, T, L*(0, ).

Obviously, Theorem 3.3 extends Theorem 1.1 to the case with my # 0.

4. A frequency domain representation

We switch to a nodal description of (1.1)—(1.5) as in [11]. The edge connecting the
adjacent nodes vy, vy is labeled by JM (ie. r; < ryur, €5 & & = {Mlvpy < vy}
etc.). Denote k‘le = 1/pJM, k?]M = 1/QJM D_]M = diag(pJM,QJM), kJM =

cosByy sinfyuy
—sin HJM COS 9JM
671 being the angle between e; and (1,0) in the reference frame. The notation
ryu implies that 77,(0) relates to 7;(z;7). For the sake of convenience, we take
each edge twice, namely 7ar, 7, thereby we obtain a multi-digraph. Of course,

diag(k} s, K20r), Rome = , where ey = (cos8a7,sin0721)7,
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o () = rarg(lyy — ), implying wyn(z) = —uprs(lone — ), won(w) = —wars(loar —
z). Consider the Laplace-transform of (1.1)—(1.5):

Li(s) = [ eyt = f(s)

(4.1) s*Fya(z, 8) — sryar(x, 0) — # (2, 0) = Kiut(z,s)

(4.2) ’f‘DM(O,S) =0, Meé&p, DeVp

(4.3) #1:(0,8) = Fyn(0,8) = As(s) VM, N € &;

(4.4 — Z Kn,(0,8) + szzj\(s) —smyA(0) — mJ}\(O) = fJ(s)
MeEy

(45) TJM(:I:7 0) = TSM(!L’), TB'M(:C’ O) = T.IIM(‘T) J 6{} UVN .

Again 77y = uspesn + wypesys, hence (4.3), (4.4) translate to

(4.6) ( m ) (0,8) = Rynr—yc ( :f}f; ) (0,5) = Ryarhs(s)
(4.7) mys?i(s) — Mzegj Ry ( Zj; ) (0,5) = Fy(s) ,

with Fy(s) = fi(s) + smsM0) + msA0). Put az = (ady,a2)T, dyy =
(dyar, d2%00)T, then

N 1 e
(48) ( Z)ﬁfl ) (z,5) = etme (GJM(3> + DJME—S-/O e~ RIMTh 1as (s, T) d’T)
1 z
_I_e—skJMm (dJM(S) _ DJM%A eSkJMTbJM(S,T) dT)

(4.9) (?JM )(0,3) = aum(s) + dym(s),

Wim
( g}ﬁé ) 0,5) = skym(asm(s) —dsm(s)) = RJMS\J(S) .

There are at least two possibilities to proceed further. One is to derive scattering
relations based on djjs (departure) and asp (arrival) as in [11], [10]. Based on
this scattering analysis, we have been able to develop nonclassical control strategies,
localization of energy-fluxes, spectral properties and much more. Here we focus on the
relation between the data (f7, 7, 7:1) and the \;’s, as being proposed in Section 2.
Therefore, the upcoming analysis is suitable for parellelization. We use (4.8) and

conclude, with Ga(lsar, 8) 1= Dypro Lot g=sksnth 1 (s,7) dr, after some calculus,

aJM(S) = ——-([ - 6_2SkJMlJM)~1 {G_SkJMlJMRMJ/A\M(S)
(4.10) _|_e—23kJMlJMRJM5\J(S) _ (I + e—SkJMlJM) G(ZJM, 5)}

d_]M(S) = RJMS\‘](S)—dJM(S) .
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Equations (4.10) provide an explicit representation of the complex amplitudes of
arriving and departing waves in forms of the traces Aj, A at the nodes vy, upr.

m,]825\J(S) +s ( Z R..JMDJMRJM) 5\](8)

Me€y

+9s ( Z R..JM.DJM(I _ e—2skJMlJM)—le—2skJMlJMRJM) 5\](8)

(4.11) MecE;
+ 2s Z R_JMDJM(I — G_QSkJMlJM)_16—SkJMlJMRMJ5\M(8)
MeE;
=F;+2s 3. RoguDyu(I — e 2*M) 7 (I 4 MG pr(Lyars) -
Me&y

Equation (4.11) when relabeled with edge-indices is just (2.15) in the frequency do-
main. Note, however, that we cannot use such transform techniques when e.g. dry
friction is present at joints. As a result, (4.11) appears as an extension of the classi-
cal Steklov-Poincaré-equation to networks, and (2.15) as its pull-back into the time
domain. See Benamou [2] for a 2-d-problem.

5. Control problems

5.1. Minimization of energy in substructures. We go back to (2.15) and integrate
with respect to time from 0 to £.

(5.1)  msAs(t) + (Z P,-) (B +235 Y (DRI (0)
i€ly k=0ic&y

mg £ t
= Z(kaﬂ)\m)(t) =/ fr(s)ds =Y euKi/ ni(zi7,8) ds .
k=04€&; 0 icgs 0

Note that A;(0) = 0 if m; # 0 and A;(—s) =0 s > 0. Similar equations hold
for each node v,;. Note, however, that the J-th equation is the only one to contain
As(t), As(t) at the actual time ¢. It is readily seen that one might eliminate the As's
corresponding to nodes without extra masses my from (2.15),((5.1)). As a result, one
can reduce the system of equations (5.1) for the indices J to those having m, # 0.
Having solved that latter system one can then use the recurrence relations for all
those variables Ax with mg = 0. This amounts to saying, that we may w.l.o.g.
consider a reduced system with my # 0V J. That reduced system can be recast, into
a standard format as follows.

(6.2) Alt) = AA@t)+ iAjA(t — hj) + Bu(t) + g(t)

=1
A(—t) = 0, t=0
with A;, B obvious from (5.1). In (5.2) the structure of Bu(t) is again given by

B()F(t) + iB]F(t - h]) = B’Ll,(t)

j=1
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¢
where Fy(t) = / fi(s)ds. As remarked earlier, dry friction at some joints will result
0

in a discontinuous “right-hand-side”, of a type mentioned in Remark 2.4. Further,
g(t) is given by the local Dirichlet problems with fixed Dirichlet-data and corre-
sponding initial conditions. It is important to note that the number [ of delays
increases with the process time. Therefore, if we want to solve (2.15)((5.2)) on a
time interval (0,T"), then we first have to compute [ as the largest integer such that
maz(2(1+1)l;/p;, 2(0+1);/¢; <T i=1,...,n.. Thenon (0,T) we have a finite de-
lay problem (5.2). We may, thereby, restrict solutions A of (5.2) with [ fixed, obtained
by semi-group theory, to (0,7} in order to solve our problem, while it is not feasible
to use these semi-group-solutions beyond T'. Keeping this in mind, we can use the
powerful theory of functional /retarded differential equations and the corresponding
control theory as surveyed for instance in Kappel [7]. On the numerical side, we can
either use approximation methods as surveyed als in [7] or the very recent parallel
approach outlined in Burrage [1]. We do not have sufficient space to dwell on this any
further. The main purpose of this section is to reformlate the problem of minimizing
the energy of a specified subsystem, in terms of the nodal variables A. In the edge 4
we have the local “total” energy:

. 1 b . 2 ! !
B(t) = 5 | {iile, 0 + Kiri(e,0) - ri(w, )} da
1 . 1 .
+§mJ|/\J(t)|2 + 5mM|AM(t)|2 i= Ey(t) + Eu(t)
Using (2.1)—(2.4) and the results of Section 2 we obtain

iEio (t) = e K(Wi(zist) + mi(zis, 1)) - Ar(t) + e Ki(i(@ina, t) + 15 (zing, 1)) - Aaa(2)

dt
= ey Kpi(zis,t) - \(t) + s Kthi(@in, ) - A (t)

+ &g Kl (zig, t) - \s(t) + esr Kim(min, 1) - Ana(t) -

However, by (2.14) we have
. Me . mg .
Ki(zint) = as(Phs(t) +2 3 (DI PAN®) - 2 X (DI han)®)),
k=0 k=0

and hence, upon integration, it is seen that E;(T") is a quadratic functional in
As(2), An(t) and their histories. In particular, set n = 2-n,, M? = R"x L?(—h,0; R")

where 0 = hg < hy < ... < by =: h. Then, using the notation from (5.2) we can
define the operator A in M? by

D) = {86 € M8 € H'(—h, ;RM)¢° = ¢(0))}
A (stl,%(»l)

1
> A6 (=hy)
7=0

Lt

i
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see Kappel [7]. Obviously, with z(t) == (2°(¢), 2 (t))",
éo(t) = 'l Ajzl(tj - hj), ZO(O) =0
H(ts) = (2Y(t,8), 2M(t,0) = 2°(t), 2'(0,5) = 0s € [~h,0]
= 2 (t,s) = 2t+s)

=00 = zl:Aij(t—hj) .

Therefore, our system (5.2) can be written in the standard format

{ Z((t; = Az(t) + Bu(t) + g(t) te[0,T]
z2(0) = 2z

We have thus shown, that solving the problem of minimizing the vibrational energy
on a substructure of an elastic network of strings reduces to a finite-horizon LQR-
problem for a system of delay differential equations of a simple form with zero initial
history. As there are no continuous delays involved, one can, in fact, always proceed
with a step-by-step procedure involving the solution of ODEs only. It is also possible
to account for the unbounded delay case directly. Then one rewrites the system into
a system of ordinary Volterra-integrodifferential equations in the Stieltjes-sense with
monotone, piecewise constant kernels. This setup is more suitable when discussing
the longtime behaviour of the system, e.g. when considering an infinite horizon LQR-
problem.
As a result, by the decomposition method outlined so far
e we are able to reduce an infinite dimensional — possibly nonlinear — control
problem to a finite dimensional one, without any kind of approximation
e we can solve the delay system and its adjoint occuring in the optimality condi-
tions in parallel using methods from [16] to obtain the optimal nodal positions
e we can solve the local PDE’s on each edge in parallel for given nodal positions.

The task of putting this program into numerical algorithms is on its way.

5.2. Controlling the energy flux. The flux of engergy in an edge is given by
—K;ri(z,t) - 7(z) and is equal to the energy transported across the section at z
in the positive e;-direction, with respect to a time-unit. Hence, at a node vy,
the energy transported into the direction of the incident edge is €; TKiri(zig,t) - As
(=K yaa753:(0,1) - As(t)). Hence, in order to maximize (or minimize) the energy flux,
say, along a given forest with roots as sources and sinks as leaves, on could take
squares of the flux as a cost. The resulting problem would be similar to those of
Section 5.1.

Let us instead use the frequency domain approach of Section 4. There, we have
shown that R

dru(s) = RymAs(s) — aju(s),

with aya(s) given by (4.10), is the complex amplitude of the wave running from
vy towards vy. The correspondance with the time-domain expression of the flux is
obvious. Therefore, the problem of controlling the flux of engery comes down to an
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equality-constrained LSQR-problem or a quadratic programming problem. This ap-
proach has been discussed in Benamou [2] in the context of minimizing the scattering
of waves incident at a surface of an obstacle.

Also, it is possible to consider the problem of exact anihilation of waves — which is
an analogue of the well-known anti-sound problem.

We remark that, particularily in the context of beams, where dry friction between
“pin-joints” becomes relevant, one might consider changing dry frictional parameters
as variable structure controls. This is an open field of research.

As is amply demonstrated, there is a wealth of interesting optimal control prob-
lems which can be reduced in dimension considerably using the proposed domain-
decomposition.

5.3. Controllability. Problems of exact controllability and approximate controllabil-
ity for non collinear 2-d-or 3-d-networks of strings and beams in the absence of masses
my have been investigated in Lagnese, Leugering, Schmidt [9]. The case of such net-
works with additional joint-masses m; remained open. Results in this direction are
available only for serial strings with such masses. See Schmidt and Wei [14], Wei [15]
and Hansen, Zuazua [5]. As an exemplaric problem in both papers, a two-span string
system with point mass in the middle is considered. The comparatively simpler anal-
ysis in sections 2, 3 makes it clear that, in that examplaric situation with one extreme
point clamped and the other controlled, the waves originating from the latter input
source will be smoothened by one degree of regularity while passing the mass in the
middle. Therefore, rough data in the first string (with one end clampded) cannot be
compensated for by control inputs at the other extreme. Indeed, for Dirichlet control
problems in that context, it was shown in [15], [5] that exact controllability holds, if
more regularity is required in the span which is not directly connected to a controlled
end, but rather reached by passing a mass. It may appear remarkable then, that
in the Neumann case (the Dirichlet case can be handled in a similar fashion) a far
simpler analysis, when compared with [15], [5], yields the same results, even for non
collinear networks! The argument is quite simple: consider a two-span string system
with a mass in the middle. For the clamped node there is no component in (2.15)
and the corresponding A, say Ay, is zero. Let v; be the mid-node with mass m
and displacement Ay, while the controlled node is vys, where a Neumann control is
applied. For the sake of simplicity and bevity we take all constants equal to 1.
Also, for simplicity, let ¢;(¢), da(t) denote the (sum of) forces at vy, vy caused

solely by the initial data | Y €, K;7(z:s, t) in (2.15); then (2.15) reads like:

i€€

mAs(t) + 20(8) + 430 Aslt — 20k + 1) — 23 dug(t = (26 + 1) = 65(0)

(5.3) Ane(t) 42 i Ayt —2(k+1)) -2 f At = 2k +1) = fur(t) — ou(t)
k=0 k=0

As(0) = As(0) = Aar(0) = 0.

Now, given the initial data for r1,72(1 <> NJ, 2 «» JM) and zero boundary condition
at vy, we can compute the solution r1(z,1), 71 (z,1). In the time interval [1,3] we
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then solve the Dirichlet boundary control problem in the usual way, and obtain a
unique boundary control at v; on [1,3]. This is the A;(t) required on [1,3]. Looking
closer at (5.3), it appears that A;(¢) given on [1, 3] uniquely determines fs on [0,2].
Then, the Dirichlet data A;(¢) on [1, 2] and the initial data of r1, 7 will give a solution
ro(z,2),79(x, 2). We take those as initial data, and consider the Dirichlet boundary
condition given by A;(¢) on [2,3] and 0 on (3, 4]. On edge #2 we, therefore, have again
the problem of exact null controllability on the domain [0,1] x [2,4]. The solution of
this controllability problem determines fas(t) on [2,4].

This principle can be applied also to different physical constants, and using the
arguments in [5] on p. 1390, to varying stiffness-problems. Moreover, and more
importantly, we can show exact controllability results for tree-like networks with
joint-masses, when all leaves are controlled. It is plain that the regularity of initial
data has to increase by one degree, each time a mass has to be passed while following a
path to a controlled end. The precise regularity statement is, however, a bit involved
and admittedly of rather academic interest in real applications. Therefore, if we do
not insist on sharp regularity requirements for the initial data, we can state the result
in the following

Theorem 5.1. Let the initial data be sufficiently smooth. Let G be a tree with the root
Uroo clamped. Let all simple nodes (other than the root) be controlled by Lo (0,T)-
Neumann controls, where T > 2 % dist(vpo0t, G). Then the correpsonding network of
elastic strings (1.1-1.5) with masses at the joints is ezactly controllable.

As was shown in [11], exact controllability of a 4-node star-graph with one node
clamped and only one other simple node controlled holds for a massless multiple
joint. Now instead we allow for a mass at the coupling node vy, and consider the
two uncontrolled strings connected at v; through a mass m;. Assume that one of
the strings is clamped at, say vn, while the other is free at, say vy T he two strings
satisfy, in addition to appropriately regular initial conditions, a continuity condition
at vy, the nodal displacement being A;. The resulting subsystem is generically exactly
controllable by an HZ2_ (0, T)-in-span-control (for H2(0,1;) x H'(0,1;)-initial data).
Once that Dirichlet-control is identified with A;(¢) on (0,7, the controllability from
the fourth node, say ve, by a Neumann-control follows as in the case above. Iterating
this procedure, we can prove exact controllability of e.g. a serially connected (not
necessarily collinear though) string with one extreme clamped, the other extreme
controlled in the Neumann-data, and with further uncontrolled strings attached to all
interior nodes, provided the boundary data of those attached strings are of Neumann-
type. If we do not attach strings to all interior nodes, controllability (given identical
elements) will depend on how many nodes (an even or odd number of nodes) are left
out in a row. A detailed analysis goes beyond the scope of this paper and would have
to be related to Ho’s work [6].
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ABSTRACT. We consider a simplified linear hybrid system for the problem of the control
of noise in a cavity, consisting of two coupled wave equations of dimensions two and one
respectively. A dissipative term is assumed to act in the one-dimensional equation. We
prove the existence and the uniqueness of solutions. Each trajectory is proved to converge
to an equilibrium as t — 0o. On the other hand we show that the convergence rate of the
energy is not exponential. The proof of this result uses a perturbation argument allowing
to modify the boundary conditions so that separation of variables applies.
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1. Introduction and the mathematical model

In this paper we study a simplified model for the problem of the active control of
noise, introduced in [3], consisting of a two-dimensional interior cavity with a flexible
boundary. The acoustic vibrations of the fluid which fills the cavity are coupled with
the mechanical vibrations of a string with fixed ends (Dirichlet boundary conditions)
located on the boundary of the cavity. This constitutes a hybrid system since two
vibrations of different nature interact. For other examples of hybrid systems, such as
those coupling strings or beams with rigid bodies, see [14] or [9].

Let us describe in more detail the mathematical model we shall study.

We consider the two-dimensional cavity = (0,1) x (0,1) filled with an elastic,
inviscid, compressible fluid, in which the acoustic vibrations are coupled with the
mechanical vibration of a string located in the subset T'g = {(z,0) : £ € (0,1)} of the
boundary of Q.

To describe the acoustic wave motion let ¥ be the velocity, p the pressure and p
the density of the fluid in our domain. Also, we consider that, at rest, the pressure
po and the density py are constant. The linearized equations for the propagation of
sound in an inviscid, elastic and compressible fluid, describing small disturbances,

*Partially supported by Grant 5006/1996 (Romania} and CHRX-CT94-0471 of the European
Union.
**Supported by grant PB93-1203 of the DGICYT (Spain) and CHRX-CT94-0471 of the European
Union. o
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are (see [11]):

(L1) {p’—l—pgdz'vU:O in Qx (0,00)

pt’ +Vp=0 in Qx(0,00).

We denote by ’ the time derivative.

Let W be the transversal displacement (in the plane of ) of the string which
is assumed to be dissipative and with Dirichlet boundary conditions. The interior
pressure p of the fluid is acting on the string:

(1.2) W" Wy +W' =p—py on Ty x(0,00)
: W(0)=W(1)=0 for te€ (0,00).

On I’y we impose the condition of continuity of the velocity fields which results from
the assumption that the string is impenetrable to the fluid. The part I'; = 0Q \ To
of the boundary of € is rigid and impenetrable, thus leading to zero normal velocity.
We obtain the following boundary conditions:

F-v=0 on Iy x(0,00)
vv

(13) =W' on Ty x (0,00).

By v we denote the outward unit normal to the boundary.
In studying sound waves, it is usual to assume that p = f(p). In the case of small
perturbations, we can consider that the relation between p and p is linear (see [11]):

(1.4) p—po = c3(p = po)
where ¢ is the speed of sound in our fluid.
We obtain the following system in ¥, p and W:

74+Vp=0 in x(0,00)
o+ divi=0 in Q x (0,00)
7-v=0 ' on Ty x (0,00)
(1.5) d-v=wW on Iy x (0,00)
W' Wee + W —p=0 on Iy x (0,00)
wW(0,t) =W(1,t)=0 for t € (0,00)
5(0) =9, p(0) =p° in Q
W(0)=W° W'(0)=W! on I.

Observe, in particular, that the string is fixed at its ends z = 0, 1.

For simplicity we have modified slightly the model introduced in [3] considering on
the boundary an active string instead of an Euler-Bernoulli beam. Nevertheless all
the techniques we use here can be easily adapted to that case and similar results can

be proved.
We define the energy associated with this system by:
1 1
(16) B)=5 [( V5P +8%) +5 [ (Wa*+ (W),
2 Jo 2 Jro

In (1.5), for simplicity, we have normalized all the constants to unity. If this is not
done one has to change in a convenient way the definition of the energy but the main
results of this paper remain valid.
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The system has a dissipative nature. Indeed, multiplying in (1.5) the first equation
by ¥, the second equation by p, the fifth equation by W’ and integrating by parts,
we get, formally, that:

dE(t)/dt = — /F (W2 < 0.

The aim of this article is to study the effect of the damping term, which is con-
centrated in the string equation, on the asymptotic dynamics of the whole system.
We shall prove that the dissipation can force the strong stabilization but it cannot
ensure an uniform decay rate.

We remark that this result is not surprising in view of the structure of the damping
region. Indeed, as Bardos, Lebeau and Rauch prove in [6], in the context of the control
and stabilization of the wave equation in bounded domains, if one characteristic ray
escapes to the dissipative region we can not expect an uniform decay to hold (see
also Ralston [21]). In our case each segment {(z,a), z € (0,1)}, 0 < a < 1, is such
a ray and therefore the decay rate may not be uniform.

Nevertheless, in our problem, the lack of uniform decay is fundamentally due to
the hybrid structure of the system. Indeed, the nature of the coupling between
the acoustic and elastic components of the system (i.e. the boundary conditions
on I'y) allows to build solutions with arbitrarily slow decay rate and with the energy
distributed in all of the domain and not only along some particular ray of geometrical
optics as in [21].

B. P. Rao in [22] has shown that, in various one-dimensional hybrid systems, the
coupling is such that the damping term is a compact perturbation of the underlying
conservative dynamics. This kind of arguments does not apply in our problem, since
we are in space dimension two. Actually, in [17], we have proved that, in a similar
system, the difference between the semigroup generated by the dissipative system
and the one generated by the corresponding conservative system is not compact.

Let us mention that a similar problem, in which Neumann boundary conditions are
considered for the string, was studied in detail in [16] and [17]. From the mathematical
point of view this case is easier since it allows us to separate the variables and to
obtain explicit informations about the eigenvalues and eigenfunctions of the system.
In this way we have showed that there exists a sequence of eigenvalues approaching
the imaginary axis at high frequencies and that the corresponding eigenfunctions
have the property that the energy concentrated in the string vanishes asymptotically.
This implies that, although all solutions tend to zero when the time goes to infinity,
the decay rate is not uniform.

In [1] and [2] the strong stability of the following system is studied:

' —ADP=0 in D x (0,00)

=0 on 7\ 7 x (0,00)

8®/0v + ad' =W’ on 7y x (0,00)
(1.7) W+ AW + AW+ =0 on g x (0,00)

W =0W/ov=0 on Oy X (0,00)

o(0) = °, @'(0) = B in D

W) =W, W(0)=W' on
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where D is a bounded open subset of R™ with Lipshitz boundary -, v is a segment

of yand o > 0.

Observe that, since we are dealing with an irrotational fluid, the velocity ¢ and
pressure p can be written in terms of a potential ®: ¥ = V® and p = —®;. When
doing this, system (1.5) can be rewritten follows:

" - AP =0 in Qx(0,00)
0®/0v =0 on T x(0,00)
0%/ov =W' on Ty x (0,00)
(1.8) W' — W+ W' +® =0 on Tyx(0,00)
W,(0) =W,(1) =0 for ¢ € (0,00)
®(0) = 0%, @'(0) = @* in Q
| W(0)=wW° W'(0)=W' on T.

Let us point out some of the differences between systems (1.7) and (1.8). First of
all observe that the potential ® is assumed to vanish on the rigid subset v \ 7o of
the boundary. This simplifies the set of equilibria of the system that, in this case, is
reduced to (®, W) = (0,0). However, the condition ® = 0 on v \ 7 does not seem
to be realistic. On the other hand the continuity condition on the velocity fields has
been modified. Indeed, the condition

0%/0y =W,

has been replaced by:
0% /0y +a® =W, a>0.

These boundary conditions introduce an extra dissipation on the system, since

dE _ N2 2
G0 ==[ VWP —a [ o

Moreover, the displacement W is assumed to satisfy a strongly damped plate equation
whose principal part W + AW + A?W’ is known to generate an analytic semigroup.
In this sense, this problem is different from ours. An analogous model in which the
strongly damped plate equation is replaced by W — Wy, — W, +® =0and a =0
has been analyzed in [18].

In [1], taking @ > 0 and 7, sufficiently large, the exponential stability result is
proved by using multipier techniques.

The rest of the paper is organized as follows.

In Section 2 we present an abstract formulation of the problem and we give a
result of existence, uniqueness and stability of solutions. Since we are dealing with
a linear system all these results are direct consequences of the classical theory of
maximal-monotone operators.

The asymptotic properties of the solutions are studied in Sections 3 and 4.

In Section 3 we prove the convergence of each solution of the system to an equi-
librium point uniquely determined by the corresponding initial data. We do this
using classical techniques involving La Salle’s Invariance Principle and Holmgren’s
Uniqueness Theorem.

The rate of the convergence to the equilibrium is studied in Section 4. We prove
that the decay rate is not uniform. In order to do this we start from the observation
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that the same property is true for the system with Neumann boundary conditions
for the string and next we use the fact that the difference between these two systems
is negligible at high frequencies.

2. Existence and uniqueness of solutions

We define the space of finite energy corresponding to (1.5) by:
Xo = L x L*(Q2) x H5(To) x L*(Ty),
L={7eIXQ)x [XQ): cwl¥=0}=
= {77= (v1,v5) € L3(Q) x L*(Q) : /

Q

Remark 1. Observe that 7 € L if and only if there exists a function ® € H(Q) such
that VO = 7.

X, with the natural inner product is a Hilbert space.
We define in X; the unbounded operator (D(A), A) in the following way:

D(A)={U=(@,p,W,V)eX: AU)€ X, 7-v=00onTy, 7-v=V onTo}.
Remark 2. Let (7,p, W,V) € D(A). Observe that div¥ € L*(Q) and v € L imply
that there exists ® € HY(Q) with V® = ¥ such that A® € L*(Q). Since, in addition,
we have - v=0o0onT1 and ¥-v =V on Iy we obtain thal

A® € L2(Q)

00/0v =0 onTy, 0%/0v=V € H}(T,) on L.
Since Q is conver it results that ® € H*(Q) (see [8], Theorem 5.1.8.5, p. 263). It
follows that D(A) C (HY())? x H(Q) x H?(To) N Hi(To) x H}(To) and therefore
D(A) is compact in Xy.

We can consider now the following abstract Cauchy formulation of (1.5):

U+ AU =0
(2.1) { U(0) = U,
U(t) = (7,p, W,W')(t) € D(A).

First, we have a classical result of existence, uniqueness and stability for the system
(2.1). The terminology we use is the same as in [7].

Theorem 2.1. i) A is a mazimal monotone operator in Xy generating a strongly
continuous semigroup of contractions, {S(t)}e>0, in Xp.

i) Strong solutions: If U° = (u0,p°, WO, W) € D(A) then there exists a unique
strong solution S()U® = U € C([0, 00), D(A)) N C([0,00), Xo) of (2.1).

i1i) Weak solutions: If U® = (UT), p°, WO, W) € X, then there ezists a unique
solution S(t)U° = U € C([0,00), Xp) of (2.1).
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For any weak solution, the associated energy (1.6) satisfies:

dE

2.2 iy =— / W),
(22) — 0= [ )
Proof. We prove first that the operator A is maximal monotone in Aj.

Indeed, if U° = (v_f’,po, WO, W1) € D(A) then (AU, U°) < —/F (WhH?2 < 0, which
means that A is monotone. . ’

On the other hand, for all F' = (fi, fs, f3, f4) € A we can find a unique solution
U = (#,p,W,V) € D(A) for the equation (A + I)U = F. This is equivalent to solve
the following system:

Vp+7=f
(2.3) divi+p=/fy, v-v=0onTjand 7-v=V on Ty
' V+W=Ffs

W +V —p+V = fyand W(0) =W(1) =0.

First, we consider the variational formulation of (2.3), which consists in finding
(p, W) in HY(Q) x H}(To) such that, for all (p,u) € H'(2) x Hj(To) :

/QVP'V(H/QP(H/FOW(H/FOW””U”—/rop“+2/F0W“
:/Qﬁ-VS0+/£2f2(P+/r‘0f3<p+/Fo(f4_|_2f3)u_

The left side of the equation (2.4) defines a continuous and coercive bilinear form
in (H'() x H(Ty))? while the right side defines a continuous linear form in H'(£2) x
HY(Ty).

Applying Lax-Milgram’s Lemma it results that (2.4) has a unique solution (p, W)
in H'(Q)) x H}(Ty). Finally, in view of the classical regularity results for Laplace’s
operator, this implies that 4 4+ I is maximal.

Since the operator A is maximal monotone in Xy we can apply the Hille-Yosida
theory (see [7], Theorem 3.1.1, p.37) and obtain the stated results. O

(2.4)

3. Strong stabilization

Concerning the asymptotic behavior of solutions we prove first the following theo-
rem.

Theorem 3.1. For each initial data U° = (v0,p°, WO, W) in X, the corresponding
weak solution of (2.1) tends asymptotically towards the equilibrium point (0,b,ba(z), 0)

_12 0 o) _1 2
'whereb—13 (/Qp +/1“0W anda(m)—Q( z° + ).

Remark 3. We obtain that the velocities of the fluid and the string go to zero whereas
the pressure of the fluid and the position of the string tend to some functions that are
uniquely determined by the initial data. Notice that the pressure stabilizes around a
suitable constant while the asymptotic deformation of the string is a parabola.
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Proof. The main tools of our analysis are an extension of the well known Invariance
Principle of La Salle and Holmgren’s Uniqueness Theorem.

Observe first that it is sufficient to consider only initial data U° = (v_é, O, WO W)
in D(A). A standard density argument and the property of stability (2.2) enable
us to complete the proof. In this case Theorem 2.1 gives an unique strong solution
Ut) = (7,p, W,W')(t) = St)U° for the equation (1.5), with {U(£)}:>0 bounded in
D(A). Since D(A) C X, with compact inclusion, we have that {U(¢)}+>o is relatively
compact in Ap.

We now describe the equilibrium points corresponding to our problem. These are
elements Z = (4,7, X,Y) € D(A) with S(¢t)Z = Z for all t > 0. It follows that the
equilibrium points are characterized by the system:

Vr=0 in Q
divi=0 in Q
(3.1) Z-v=0 on I'y
—Xpx—1r=0 on Iy
X(1)=X(0)=0.

From (3.1) we deduce that the equilibrium points are (0, b, ba(z),0), where b is a
real constant and a(z) is the solution of the differential equation:

{ ~ze —1=0, z €(0,1)
a(0) =a(l) =0.

On the other hand we remark that the energy function defined by (1.6) is a Lya-
punov function for the dynamical system defined by S(¢)U° = U(t) since it satisfies
relation (2.2). We prove now that E(¢) is a strict Lyapunov function. To do this let
70 = (W0, 1%, X°,Y%) € Xy, Z(t) = (@7, X,Y)(t) = S(t)Z° for all t > 0 and suppose
that the energy of the solution Z(¢) is constant. Hence Y'(¢) = 0, by (2.2).

It follows that (@,r, X,Y") satisfies:

7+Vr=0 in Qx (0,00)
'+ divi=0 in Qx(0,00)
(3.2) Z-v=0 on 0 x (0,00)
—Xew—7=0 on T x (0,00)
X(0,t) =X(1,t) =0 for t€(0,00).
Therefore:
™ ~Ar=0 inQ
(3.3) Or/ov=0  on o0
=0 on I'y.

We can apply now Holmgren’s Uniqueness Theorem (see [10], Theorem 8.6.5, p.
309 and [12], Theorem 8.1, p. 88) which implies that v = 0 in © x (1,00) and so
r(t,z,y) = r(z,y) in Q x (1, 00).

From (3.3) we can deduce that 7 = b in Q x (1, 00) where b is a real constant.
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Moreover, from (3.2), it follows that @ = 0 in £ % (1,00) and X is solution of the
equation:

Xz —b=0 on I’y x (1, 00)
X(0,t)=X(1,t)=0 forte (1,00).

Taking into account the uniqueness of solutions of the system (3.2) we obtain that
70 = (ud, 79, X°,Y?) = (0,b, ba(z),0). Hence Z° is an equilibrium. Therefore E(t) is
a strict Lyapunov function.

We are now in conditions to apply La Salle’s Invariance Principle.

Let now U° = (0, p°, W°, W) be the initial data for (1.5). By La Salle’s Invariance
Principle it follows that the trajectory tends to the set of the equilibrium points when
the times goes to infinity. Let us prove that, in fact, the trajectory converges to a
unique point.

Integrating the second equation of (1.5) in  we deduce that the quantity /Q P+

WP is constant along the trajectory. Since the equilibrium points are of the form
To
(0,b, ba(z),0) it follows that the corresponding solution of (1.5) tends to an unique

12 .
equilibrium point, the one for which b = 3 ( / p0 + WO) .0
Q To

Remark 4. We can decompose the space Xy as Xy = X0 ® X, where:

X9 = {(@,0°, WO, V%) € X : Jor+ fp, WP =0},
X3 ={(0,b,ba(z),0) € Xo, b € R}.

The projection of the solution U(t) of (1.5) on Xy is a constant function in time
whereas, by Theorem 3.1, the projection on Xg tends to zero ast goes to infinity.

4. The lack of uniform decay

In this paragraph we prove that the rate of decay is not uniform. Results like this
are typical for linear hybrid systems in which the dissipation is very weak: it can
force the strong stabilization but it cannot ensure the uniform decay.

First of all we recall that a strongly continuous semigroup {.S(¢)}:>0 has exponential
decay if there are two constants w > 0 and M > 0 such that

(4.1) [1S@®)|| < M exp (—wt), Vt>0.

We also remark that, in the case of linear semigroups, the exponential decay is equiv-
alent to the uniform decay. Therefore, if a linear semigroup {S(t)}+>o does not have
exponential decay then there are initial data U° such that S(t)U° decays arbitrarily
slowly to zero. More precisely, if ¢ : [0,00) — oo is a continuous decreasing func-
tion such that () — 0 as ¢ — oo then there exist an initial data U ¢ X and a
sequence (t)x=o tending to infinity such that ||S(£)U°|| > ¢(tx) (see [13]).

When the Dirichlet boundary conditions of W in (1.5) are replaced by the Neumann
ones, i.e. if W is assumed to satisfy

W,(0,t) = Wo(1,0)=0, t>0
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this result is easy to show. Indeed, under these boundary conditions one can find a
sequence of solutions {(vn, Dn, Wn)}nen of the type (v, Pn, W) = e (4, D, W)
in separated variables such that Re A, — 0 as n — oo (see [17]). However, the sepa-
ration of variables does not apply with the boundary conditions we are considering.

In order to prove that, for our system, there is no uniform decay we analyze first
a conservative problem. Next, using the fact that these two systems are very close
one from another (in a way that we shall make precise later on) we prove the desired
property.

We consider now the following undamped system in 7, p and W:

7T+Vp=0 in Qx(0,00)
p'+ divi=0 in Qx(0,00)
T-v=0 on Ty x (0,00)
(4.2) v-v=W on T x (0,00)
W' Wy —p=0 on Ty x (0,00)
W,(0,t) = Wp(1,¢t) = for ¢ € (0,00)
7(0) =0, p(0) =p° in Q
W(0)=w% W'(0)=W?! on T,.

Remark 5. Since we have dropped the dissipative term W' in the string equation the
system (4.2) is conservative. On the other hand we remark that the Dirichlet bound-
ary conditions for the string have been replaced by Neumann boundary conditions.
This will allow us to use the separation of variables and to obtain useful informations
about the eigenvalues and eigenfunctions of the system. We do this in Lemmas 4.1
and 4.2.

The initial data (00, p°, WO, W) is considered in the space of finite energy:
(4.3) X =L x LX(Q) x HY(T'y) x L*(Ty),

We define the energy associated to this system in the same way as in (1.6). We
also define in X the unbounded operator (D(B), B):

B(@P»VV,V) = (Vpa le 67 _Vva _W:E:c —p)a
DB)={U=@pW,V)eX: BU)e X, ¥ -v=0o0nT}y,
7-v =V on I'g, W;(0) = W,(1) = 0}.

Lemma 4.1. The operator B has a sequence of purely imaginary eigenvalues (Ani)nen
where A\, are the roots of the equation:

(4.4) ¢ tan( =1.

Proof. We look for a sequence of solutions {(vy,Pn, Wy)}nen for (4.2) of the type
(U, Pry W) = €722 (107, 7, v,) Where 107, = 0, (y), 7 = 7n(y) and v, € R.
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We can see that (4.2) has solutions of this form if (i, 7y, vs) satisfies

—Ap iy, + Vr, =0 for y € (0,1)

(4.5) —(A)*r — (Tn)yy = 0 for y € (0,1)
(rn)y(1) = 0, (rn)y(0) = —(An)?vn
(An)?vy, + 7, (0) = 0.

1 1
It follows that 7, (y) = cos (A, (y — 1)), tn = /\——Z,Vrn and v, = W sin A, solves

(4.5) if A, is solution of the algebraic equation (4?4).
It is well known that, for each n € N, there is a root of this equation which belongs

to the interval (nﬂ' - g—, nm + g) This concludes the proof. O

Remark 6. A very similar proof allows us to show that, if in the string equation in
system (4.2) we introduce the dissipative term W', there is a sequence of eigenvalues
such that Re (A\,) — 0 as n — 0o as we mentioned before. This implies that the decay
rate of the associated semigroup is not uniform. In the case of system (1.5) under
consideration it is difficult to show directly the existence of such solutions since we
can not use separation of variables.

Remark 7. The roots (\,)n of the equation (4.4) have the following asymptotic de-
velopment:

1 1
)\n=n7r+——+0<—3>, as n — oo.
nw n
For details see [19], p. 12.

To each eigenvalue ), 4 given by Lemma 4.1 it corresponds an eigenfunction én
defined by:

%VCOS Oy —1))

(4.6) £ = cos ()\glgly/\; 1))

A

isin A,
We shall denote by &/, j € {1,...,4}, the components of &,.

Lemma 4.2. If (£,), is the sequence of eigenfunctions of system (4.2) corresponding
to the eigenvalues (M, 1), given by Lemma 4.1 then:

i) The last two components of &, tend to zero when n tends to infinity.

ii) The sequence (&) does not tend to zero in X when n tends to infinity.

1
Proof. i) Since A, = n7 + n—lﬂ_- +0 (ﬁ) it follows that (sin A,), tends to zero in R

when n tends to infinity.

ii) We simply remark that

1  sin2)\, 1
6l 2 1200 = 5 — Tt — g asn—c0. C
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Remark 8. Lemma 4.2 shows that there are solutions of (4.2) in which the effect of
the vibrating string vanishes asymptotically. This indicates that the boundary condi-
tions for the string are not very important at high frequencies. Since the system with
Neumann boundary conditions does not have an exponential decay (see Remark 6)
we can expect that this will be the case for system (1.5) too. Indeed, as the proof of
the following Theorem shows, the solutions of (4.2) can be slightly modified in order
to obtain solutions of (1.5) with arbitrarily small exponential decay rate.

The main result of this paper is the following:

Theorem 4.3. The decay rate of the semigroup {S(t)}i>o is not exponential in the
space XJ.

Proof. We shall prove the theorem by contradiction. Suppose that {S(t)}:>0 has
exponential decay in XY, i.e. there are two constants w > 0 and M > 0 such that:

IS@)llxg < M exp (-wt), VE=0.

Let R{A : p) be the resolvent of A in p, R(A : p) = (A — pZ)™}, where p is a
complex number in the resolvent set of A. We recall that R(A : p) = / e*tS(t) dt
0
(see [20], Theorem 3.1, p. 8). Hence

@7 IRA: g < [T S@lgat < [ MePr e,

Since the operator A is dissipative we have that the resolvent is well defined from
X0 to D(A) for all imaginary numbers p (with Rep = 0). In this case we obtain
from (4.7) that the resolvents are uniformly bounded:

(4.8) [[R(A: p)lxe < % for all p with Rep = 0.

We shall prove that there exist a sequence of imaginary numbers (A, i)nen, A € R,
and a sequence of functions (®,)nen C AY, ||®n|lxe = 1, such that

(4.9) IR(A : 1) @y||xe — 0o when n — oo.

This contradicts (4.8) and the proof is completed.

In order to do this let (A, 7)nen be the sequence of eigenvalues of the problem (4.2)
given in Lemma 4.1 and let (&,)nen be the corresponding eigenfunctions given by
(4.6).

Observe that £, & XY because the third component, which is a constant, does not
belong to H(Ty). We shall “cut-off” this constant function in order to get a slightly
modified one in H}(Ty).

For each n € N we define the function u, : [0,1] — [~1, 1] by:

An |z
(_|)\n|$+ 1)e|/\n|a:—1’ ifx e [O, |)\_1n|)
_ [An |(1—)
(4.10) Uy, = (|>\n|m_|)\n|_|.1)e1%7 ifze (1—1,\1—n|,1]

0 otherwise,
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and the function A, as the solution of:

—Ahy, +h, =0 in Q
oh,,
(4.11) 5y =0 onTy

hr, .
?_1/- = (Sln >\n) Up, On 1—‘0.

Let now
Vh,
Sin An fl
2san fh
Y o ¥n
wn = - and ©On = fn - "/)n
SiN A,
. On

—1 80 Ay U
From the definitions of the functions u, and h,, it follows that ¢, € D(A)NAY for

alln € N. (A= i)
. — AnlL)Pn
Finally let @, = - .
(A~ X i T)gnllxo

We obtain that: o

R(A: 1)@, = - )
(A0 9) @0 = 2 i Dnllng

and we want to prove that (4.9) holds.
Since we need more information about the norms of ¢,, and (A — A, iZ)p, we shall
prove first some properties of the functions u, and hy,.

Lemma 4.4. The functions u, and h,, defined by (4.10) and (4.11) respectively have
the following properties:

9 lunllte = 0 (5

ii) [|(un)esl22 = O (Mn)?) -
i) Il = 0 (s )
i) 3l = [l = 0 (5057
Proof. i) From (4.10) we obtain
lnl 201y = 2/0"*1’7'(—|An|x +1)2 Pl < 2/0'+"|(~|)\n|x +1?=0 (Ain) .

i) We have that

1
9 _ 4 [Pl 1 2])\~zn_|z
H(un)ﬂm”L?(O,l) - 21)‘71] /0 (P‘n'x — 1)4 giint=1
1 1 2s
_ 3 2o 3
= 2|\ /0 (8_1)46 1ds < 2¢|\|°,

o1 s
where ¢ = / W e ds is a constant which does not depend on A,.
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iii) From (4.11) we deduce that, for all § > 0,

|sin Ay | (1 9 2)
< B
- 2 5/1"0 [ +5/F0 ]
|sin Ay |

1 2 2
< 5 (5 /FO |t +5C||hn||H1(n))-

. _ 1 .
Taking 6 = e Ve obtain that

el By + lltsy = |=sinda [ unho
0

s oy < elsin [ funf”.

Here c is a generic positive constant that may vary from line to line.
1 1

Since sin A, = O (——) and / lup|? = O (—) by 1), iii) follows.
An To An

iv) We simply observe that

|| = Ahnlr2i@) = [|hnllz2@) < [1oall @)
and use iii). The proof of the Lemma is now completed. [J

In order to complete the proof of the theorem we estimate ||(A — A i Z)¢n||xo and
|l¢n||xo when n tends to infinity.
Observe first that, by Lemma 4.4 i), we have

sin A, rl
(412 leallag 2 1€l — |5 [ unf — 5 a5m — 00
On the other hand
—~Vhy,
1
—Ah, + sin )\n/ Up,
(A=t D)p, = 0 0
sin A, sin A, 1 .

X, = (Un )z + b Uy, + sin Ay, Uy,

We obtain that
(A = X i D)gnllze < lallf ) + 21| AR |22

2sin Ay, |°
An

(”(un)zz“%?(l"o) + Hun”rﬁ(ro)) + 4[sin An12||un||%2(ro)‘

1
Taking into account the results of Lemma 4.4 and the fact that sin A, = O <)\—) we
obtain that "

(4.13) (A — )\nil')@nﬂi,g — 0 when n — oo.

The last result together with (4.12) contradicts (4.8). So the assumption that
{5(t) }+>0 has exponential decay must be false and the proof is completed. [
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Remark 9. Analyzing the exponential stability of the classical wave equation with dis-
sipation on the boundary

u—Au=0 inx(0,00)

0
(4.14) —a—g +u'=0 onTyx(0,00)

u=0 on T’y X (0, 00)
Bardos, Lebeau and Rauch in [6] prove that if one characteristic ray escapes to the
dissipative region Ty we can construct solutions with an arbitrary decay rate and with
the energy concentrated along this ray. In our case every segment {(z,%0) : T €
(0,1)}, for any yo € (0,1), constitutes a ray with such a property and their argument
could be applied as well.

Nevertheless the proof of Theorem 4.3 shows that we can find a sequence of solutions
of (1.5) with the energy uniformly distributed in all € and with arbitrarily small
ezponential decay rate. Indeed, if (®,,)n is the sequence considered in the proof, let
(S(t)®y,)n be the sequence of corresponding solutions of (1.5). By (4.7) we have that

IR(A: A D)®allag < [ 1(2)@allp

If (S(t)®,)n had an uniform exponential decay rate, for ezample,
”S(t)(I)nHXOO < Mexp (—wt)l then

) M
IR(A : X §)@nlxg < m
which is not true since (4.9) holds.

Therefore the lack of uniform decay of our system is of a different nature and is
related not only to the support of the dissipative mechanism but also to the nature of
the boundary conditions or of the coupling between the different components of the
system.

Remark 10. We mention that in the proof of Theorem 4.3 we may start with solutions
(U3, Py Wadnen of (4.2) of the type (Up, P, Wp) = e (agy,, T, Uy ) cos (mimz) where
i = Un(¥), T = Ta(y), vn € R and an arbitrary m € N. Therefore we can find a
sequence of solutions of (1.5) with arbirary exponential decay rate and with a fized
frequency of vibration in the z—direction (m € N fized). This is due to the fact
that the one-dimensional problems obtained by separating the variable x do not have
an ezponential decay for m fized. This is an important difference with respect to
system (4.14) in which the exponential decay holds if the frequency of vibration in the
z—direction s fized, but with o decay rate that vanishes as m — 0o.

5. Comments

In [3] a two-dimensional model is presented in which, on the subset I'g of the
boundary, an Euler-Bernoulli beam with fixed ends is considered. The methods
developped in this paper can be adapted to this type of problems too.

The results of Sections 2 and 3 can be generalized to similar models in other
domains. For instance, if ) is a bounded open set in R? with smooth boundary and
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[y is an open subset of the boundary of the domain, one can replace in (1.5) the wave
equation satisfied by W by

2w
W’ — = +W —p=0 on T[gx(0,00)
where a‘i; is the derivative in the tangential direction.

The results of Section 4 may be extended to some particular geometries. For
instance, in [15] we analyze the case in which Q is a ball of R? and the dissipative
term acts on the whole boundary of ). We obtain that the corresponding system
does not have exponential decay. This indicates something we already pointed out
in Remark 9: the lack of uniform decay in this type of systems is due to the hybrid
structure and not to the localization of the dissipation in a relatively small part of
the boundary. Although this model does not have much physical meaning, all the
techniques we used there can be adapted to the case of a cavity enclosed by a thin
cylindrical shell which is much more realistic (see [4]).

Acknowledgments: The first author wishes to thank all organizers of the Project
MATAROU TEMPUS JEP 2797 and especially Professor Doina Cioranescu for their
support and dedication to this programme.
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ABSTRACT. In this paper we study an optimal control problem for linear parabolic systems
with pointwise state constraints and measurable controls acting in the Dirichlet bound-
ary conditions. Using the framework of mild solutions to parabolic systems with nonregular
dynamics, we prove a general existence theorem of optimal controls and derive necessary op-
timality conditions for the state-constrained problem under consideration. Our variational
analysis is based on a well-posed penalization procedure to approximate state constraints
and then to study a parametric family of approximating problems. The final result estab-
lishes necessary optimality conditions for the original state-constrained problem by passing
to the limit from approximating problems under a proper constraint qualification.
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Key words and phrases. Approximation, pointwise state constraints, constraint qualifica-
tion, Dirichlet boundary controls, parabolic equations, and mild solutions.

1. Introduction

This paper is devoted to optimal control of parabolic systems with nonregular
Dirichlet boundary conditions and pointwise state constraints. It is well known that
the Dirichlet boundary control case is the most challenging and the least developed
since such conditions offer the lowest regularity properties of the parabolic dynamics;
cf. [1], [2], [5)-[12], [17], and references therein. The presence of pointwise state con-
straints brings an additional nonsmoothness to optimal control problems and requires
the development of special methods for their variational analysis.

In this paper we provide such an analysis based on the theory of mild solutions
to nonregular parabolic systems and well-posed smooth approximations. Crucial
elements of this analysis and the corresponding results have been presented in [14]-
[16] for certain special cases of the problem under consideration related to minimax
control in uncertainty conditions.

In this paper we consider a general Dirichlet boundary control problem with a
nonlinear integral cost functional involving the final state of the n-dimensional lin-
ear parabolic equation. Under natural assumptions we prove the existence of op-
timal controls and necessary optimality conditions in the presence of magnitude
control and state constraints. To obtain necessary optimality conditions for the
state-constrained problem we develop a constructive penalization procedure involving
smooth approximations of multivalued maximal monotone operators. We establish

*This research was partly supported by the National Science Foundation grant DMS-9404128
and the USA-Israel BSF grant 94-00237.
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the well-posedness/strong convergence of approximations in appropriate spaces and
derive necessary optimality conditions for approximating solutions. Finally, neces-
sary optimality conditions for the original state-constrained problem are established
under a proper constraint qualification which is different from the standard Slater
interiority type.

The paper is organized as follows. In Section 2 we formulate and discuss the
Dirichlet boundary control problem of our study, present preliminary results from the
theory of mild solutions, and prove a general existence theorem of optimal controls.
Section 3 concerns with the development and justification of the main approximation
procedure; it contains convergence results as well as necessary optimality conditions
for approximating solutions. In the final Section 4 we furnish a limiting process
to derive necessary optimality conditions for the original state-constrained problem
under a proper constraint qualification.

2. Problem Setting and Existence of Optimal Solutions

Let © ¢ RY be an open and bounded domain whose boundary T is an (n —
1)—dimensional manifold. With 7' > 0 we set Q := (0,T) x Q and ¥ := (0, 7] x I".
Let A be a second-order uniformly strongly elliptic operator on 2 given in the form

A= % Loy )+ Yol +aole)
o i5=1 0% 0w v dz; ' ’

with the smooth real-valued data a;;(z), a;(z), and ao(z).
We consider the following Dirichlet boundary control system for linear parabolic
equations

y:+ Ay = f a.e in Q,
(21) y(O,Q?) = yO(x)a YAS Q:
y(t,z) = u(t,z), (t,z) €X

where y; denotes the derivative of y with respect to time ¢, f € L>(Q), and yo(z) €
H}(Q) N H?(Q). In what follows we impose pointwise state and control constraints of
the magnitude type:

a<ylt,z) <b ae (t,z)€Q,

(2:2) c<ult,z)<d ae (t,z)eX

where both intervals [a, b] and [c, d] contain 0.

We say that u is a feasible control to system (2.1) if the corresponding trajectory
y satisfies the state constraints (2.2). We always assume that system (2.1) admits at
least one feasible control u.

Denote by

Ung :={u € LP(0,T; L*(T)) | c < u(t,z) < d ae. (t,z) € 5}

the set of admissible controls where p is a positive number that will be specified
later. In the sequel the solution (trajectory) y of (2.1) corresponding to u € Ugg is
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understood in the mild sense; cf. [1], [8]-[11], [18]. This means that y : [0,T] — L*(Q)
is continuous and admits the following Cauchy-like representation:

o) = S+ [ St =) (r)ar

(2.3) .
+ / A3 (4 — 1) AVA-S Du(r)dr W6 € (0,1/4]

0
where S(-) is the strongly continuous analytic semigroup generated by the operator
_A7 f() € LOO(Q)a and

D: Lz(I‘) — D(A1/4—f5) _ H1/2—25(Q)

is the so-called Dirichlet map. The latter operator is defined by z = Du through the
solution of the elliptic boundary-value problem

—Az=0 in Q,
z(t,z) = u(t,z), (t,z) €.

It is well known that the Dirichlet map is continuous for § € (0,1/4] and, moreover,
system (2.1) has a unique mild solution for each u € Upg when p is sufficiently large;
see, e.g., [11] and [16] for more discussion and references.

Note that, being a L?(Q)-valued function, y(-) = y(t,z) is merely measurable with
respect to (t,z). This lack of continuity creates certain technical difficulties to deal
with nonregular Dirichlet boundary conditions. Nevertheless, mild solutions provide
a reliable ground to study optimal control problems involving such conditions.

Let us consider the performance index (cost functional) given by

T(u,y) = /Q o(y(T, z))dz + / /Q gt 2, y(t, 2))dtdz

* / /,g h(t, =, u(t, z))dido,

where o, is the Lebesgue measure on I'. Observe that the first term in (2.4) depends
on the final state of (2.1) that creates additional difficulties in the framework of
nonregular Dirichlet boundary conditions; see, e.g., Chapter 3 of [12].
Throughout the paper we impose the following hypotheses on the integrands in
(2.4):
(i) ¢ € C*(R) and there is a nonnegative function k; € L*(R) as well as a constant
¢; > 0 such that

(2.4)

|’ (2)] < k1(2) + 1]z Yz €R.
(ii) g is measurable in (¢, %), continuous in y, and |g(¢,z,y)| is majorized by a

LY(Q)-function for all y € [a,b]. In addition is measurable in (¢,z) for

99
k) 8y
any y € R and there is a nonnegative function k; € L*(Q) as well as a constant
¢o > 0 such that '

8
|8—‘z(t,m,y)| < Eolt,z) + coly| ae (tz)€Q, VyeR
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(iii) h is measurable in (¢, z), convex and continuous in u, and bounded from below
h
by a L*(X)-function for all u € [¢,d]. In addition, % is measurable in (¢, z)

for any u € R and there is a nonnegative function k3 € LX) (1/p+1/¢ =1)
such that

|%(t,$,u)| < k3(t,z) ae. (t,z) €X, Yu€ [cd].

The main concern of this paper is the following optimal control problem:

(P) minimize the cost functional (2.4) over the Dirichlet boundary control system
(2.1) subject to u € U,g and the state constraints (2.2).

The first question we consider is the ezistence of optimal controls to problem (P).
To establish a general theorem in this direction as well as other convergence results
for mild solutions of (2.1} we are going to employ certain continuity properties of the
linear operator

2.5) Lu=(Lo)®) = [ " 4344 — 1) AV Du(r)dr

from LP(0,T; L*(T")) into L7(0,T; HY/?>7¢(2)) where p, r € [1,00], § € (0,1/4], and
e € (0,1/2]. Here HY?7¢(Q) C L?() is the Sobolev space whose norm ||y|l1/2—e,
being stronger than ||y||2(q), can be defined by [[y|l1/2—c := [|AY4~*/%|| 12(q); cf. [12].
Note that HO(Q) = L%(2). When t =T, we use Ly to denote (2.5).

The following assertion was proved in [16], Proposition 3.1, based on estimates in
Washburn [18] and Lasiecka—Triggiani [9]. Similar but somewhat different properties
were established in [10].

Proposition 1. Let p > 4/¢ with € € (0,1/2]. Then the operator £ : LP(0,T; L*(T))
— C([0, T}; H'/?>5(Q)) is linear and continuous. Moreover, the operator Ly : LP(0,T;
L3(T)) — HY?75(Q) is also continuous and its adjoint operator Lk : H™Y/2+¢(Q) —
L0, T; L*(T)) (1/p+ 1/q = 1) is given by L% = (AS(T —t)D)*.

The next assertion, proved in Proposition 3.4 of [16], is crucial in passing to the
limit in approximation procedures throughout the paper.

Proposition 2. Let p > 4/e with ¢ € (0,1/2). Then the weak convergence of u, — u
in LP(0,T; L*(T")) implies

Lu, — Lu strongly in L*(Q) as n — oo.

In what follows we always assume that p is sufficiently large to ensure the conver-
gence property in Proposition 2 with some € € (0,1/2). Now we can formulate and
prove the existence of optimal controls in (P).

Theorem 3. Under the assumptions made above there exists an optimal solution
(@,7) € Uug x C([0,T); H/?=%(Q)) to the Dirichlet boundary control problem (P).

Proof. Let (uy,yn), n=1,2,..., be a minimizing sequence of feasible controls u, in
(P). For each n =1,2,... we consider the corresponding mild solution y, of system
(2.1) that is uniquely defined by u, and belongs to the space C([0,T]; H*2~¢(Q))
where € is any given number in (0,1/2] (this easily follows from Proposition 1). We
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always take ¢ < 1/2 to ensure the convergence property in Proposition 2 with large p.
Since {up} C Usq is weakly compact in LP(0,T; L*(T')), there exist a control @ € Usq
and a subsequence of {u,}, still labelled as {u,}, such that

u, — @ weakly in LP(0,T;L*(T)) as n — oo.

Proposition 1 ensures that operator (2.5) acting from LP(0,T; L*(T')) into C([0, TY;
H'?75(Q)) is weakly continuous. By (2.3) this implies that

Yo — § weakly in C([0,T]; H/*~*(Q2))

where 7 is a mild solution of (2.1) corresponding to 4. Now employing Proposition
2, we conclude that

Y, — 7 strongly in L%(Q) as n — oo.
The latter ensures the existence of a subsequence {y,, } C {yn} With
Un, (8, 2) — G(t,z) ae. (t,z) €Q as k — oo.

Such a pointwise convergence implies that the limiting trajectory 7 satisfies the state
constraints (2.2) since each y, has this property. Therefore, % is a feasible control to
(P).

To prove the optimality of % in (P) we invoke the well-known fact that due to
(iii) the last term in (2.4) is a weakly lower semicontinuous functional in the space
LP(0,T; L3(T)). Furthermore, the Lebesgue dominated convergence theorem allows
us to pass to the limit under the integral signs in the first and second terms of (2.4),
due to the pointwise convergence of y,, — 7 and assumptions (i) and (ii). Therefore,

J(@,7) < li]gninf I (Uny s Yny,)

that proves the optimality of @ in (P). 0

Remark. We do not need smoothness assumptions on ¢, g, and h to prove the
existence of optimal controls in Theorem 3. The most essential requirements for
this are the convexity of A in u and the right choice of p and € ensuring the conver-
gence/continuity properties in Propositions 1 and 2. However, we use the smoothness
assumptions in the subsequent sections to derive necessary optimality conditions. To
simplify the exposition we have combined all the assumptions together.

3. Necessary Optimality Conditions in Well-Posed Approximations

In this section we develop a well-posed approximation procedure allowing us to
remove the state constraints in (P). We establish an appropriate strong convergence
of approximations and derive necessary optimality conditions for approximating so-
lutions. The latter results can be viewed as suboptimality conditions for the state-
constrained problem (P) being the base to obtain necessary optimality conditions for
(P} in the next section.
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Let o : R = R be a multivalued mazimal monotone operator of the form
[0,00) if r=5b
(—0,0] if r=a
o(r) = 0 if a<r<b
0] if either r <aorr >b.
Using the Yosida approximation y~(r — (1+~a)™'r) of () and then a C§°-mollifier
in R, we may choose a smooth approximation of a(-) as

Y r—b)—1/2 if r>b+7y
2 Y r-5b)? if b<r<b+ry

(3.1) a,(r) =S v r—a)+1/2 if r<a-—vy
—(2¥) Y r—a)? if a—y<r<a
0 if a<r<bd

with the property |ye/,(r)| < 1for all 7 € R and v > 0; cf. [2], p. 322.

Let (@,%) be a given optimal solution to problem (P). We consider the following
parametric family of boundary control problems without state constraints:

(P,) minimize J,(u,y) :== J(4,y) + llu — @l 01,02y T Vv W 7207522000

over u € U,q subject to system (2.1).

We are going to study problems (P,) from the three perspectives: existence of
optimal solutions, their convergence to (@,§) as vy — 00, and necessary optimality
conditions for them as v > 0. The next proposition answers the first question.

Proposition 4. Let p > 4/¢ with € € (0,1/2). For each v > 0 problem (P,) has at
least one optimal solution (u.,y,) € Usg x C([0, T; HY/275(Q)).

Proof. The set of feasible solutions to (P,) is not empty since it obviously contains
(@,7) for any v > 0. First we should check that the cost functional in (P, ) is proper,
ie.,
(3.2) Jy(u,y) > —00 Yy >0
for all feasible solutions (u,y) to (P,). It easily follows from assumptions (i)-(iii)
that

J(u,y) + [lu— ﬁllgP(O,T;Lz(I‘)) > —00.
To establish (3.2) it remains to show that

(3.3) oy (W)l z2(0,75220)) < 00 ¥y > 0.

Taking into account the definition of mild solutions (2.3) and estimates in [9] and
[18], one gets

max{|c|, d}/meas(I") ,_
ly(®)l 22y < M(1+ { |1 —}4(5 ( tlTM) for any fixed 6 € (0,1/4)
with some constant M > 0. Due to (3.1) the latter implies (3.3) and hence (3.2); cf.
the proof of Proposition 4.1 in [16] for more details.

Now arguing as in the proof of Theorem 3 and using Propositions 1 and 2, we
conclude that the cost functional in (P,) is weakly lower semicontinuous on the set
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of feasible controls U,q which is weakly compact in LP(0,T; L*(T")). Therefore, the

existence of optimal controls in (P.) follows from the classical Weierstrass theorem.

O

Next we establish the well-posedness of the approximation procedure under con-

sideration proving the strong convergence of optimal solutions in (P,) to the given
optimal pair (@,7) in the original problem (P).

Theorem 5. Let (i, %) be the given optimal solution to (P) and let {(uy,y,)} be a
sequence of optimal solutions to the approzimating problems (P.). Then there is a
subsequence {vx} C {7} such that

Uy, — T strongly in LP(0,T; L*(T)), Yy, — § strongly in C([0,T]; H/*75(Q)),
and Jy, (Uy,, Yy,) — J(4,7) as k — oo.

Proof. Since (@, ) is feasible to (P.,) for each v > 0, one has
(3.4) (U, yy) < J,4(8,9) = J(8,7) Vv >0.
Due to (3.4) and assumptions (i)—(iii) we get

oy W) 22070209 < M ¥y >0
for some constant M. This yields
(3.5) Moyl r20,r;22(0)) — 0 asy — 0.

Since U,q is weakly compact in the reflexive Banach space LP(0,T; L3(T)), there
exists a subsequence of {u,}, still denoted by {u,}, such that

(3.6) u, — % weakly in LP(0,T; L*(T')) as v — 0

for some % € U,y. Denote by ¢ a mild solution of (2.1) corresponding to @ and
employing Proposition 2, one can find a subsequence {vx} C {7} such that

(3.7) Yy (8, 2) — G(t,z) ae in Q as k — oo.

To pass to the limit in (3.4) we need to show that § satisfies the state constraints
(2.2). For this purpose let us consider the following sets:

O, ={zeQla—v<y(t,z) <a}l; Wo:={r€Q|ylt,z)<a—1}k
Oy ={zeQ|b<ylt,z) <b+} Oy :={recQ|y(t,z) >b+7}

They are Lebesgue measurable due to the choice of y € C([0, T]; H*/>7%()). Taking
into account (3.5) and the structure of o, (-) in (3.1), one has

/OT Qia@w—z(%(t’ z) — a)'dtdz + /OT /Qtz.z (y4(t,2) — a +/2)*dtdz
+ /OT /mlb(27)‘2(y7(t, z) — b)*dtde

) 2
+‘/0 /Q%b(y’y(tax)—b—fy/Q) dtdz — 0 asy — 0.
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Applying Lemma. 4.2 of [16] similarly to the proof of Theorem 4.3 therein, we conclude
that
a<g(t,z) <b ae inQ,

ie., (@,7) is a feasible pair to the state-constrained problem (P). The latter yields
(38) J(@,9) = J(@,9).
Now passing to the limit in (3.4) and taking into account (3.6)-(3.8) as well

as the weak lower semicontinuity of the cost functional (2.4) in the control space
LP(0,T; L*(I)), we arrive at

(3.9) lim fluy — 'a”iz’(o T,L2(T)) — 0 and lim ’Yk”a%(@/%)”%2(0,7“;1,2(0)) =0.

The first equality in (3.9) means that u,, — @ strongly in LP(0,T; L*(T')) as k — oo.
By Proposition 1 this implies that y,, — 7 strongly in C([0,7]; H 1/ =¢(Q)) as k — oo.
Therefore, one has @ = @ and § = §. Finally, the cost functional convergence in the
theorem follows from the second equality in (3.9). O

The last result of this section provides a necessary condition for an optimal control
u., to each approximating problem (P.). This condition is expressed in terms of the
adjoint operators to £ and L considered in Proposition 1.

Theorem 6. Let (u,,y,) be an optimal pair to problem (P.)). Then one has

6.10) 0< //[ L' (yy))(t, ) -l—,C*(gy(t T, 1) + 27c, (yy) ey (yy))
1
@x%mmm+%/n% WwM/< — Qudoy)dt

for any u € L”(O,T; L3(T)) such that u, + Ou € Usq for all 6 € [0,0] with some
6y > 0.

Proof. Consider variations of u, of the form w, + fu € Uyq with u € LF(0,T; L*(T))
where 6 € [0, 6] for some 6, > 0. Denote by y., a mild solution of (2.1) corresponding
to u, + 6u and consider a function % : [0,6p] — R defined by

Y(0) := Jo(uy + 0, Yyu).
Clearly 7 attains its minimum at = 0. Moreover, Proposition 1 implies that

You — Yy strongly in C([0,T]; H*75()) as 6 — 0 and

yw(r’ z) = y,(T, x) = Lou Ypult, ) — y,(t, ) — Lu V0> 0.

0 ’ 0
Employing these results and the classical mean value theorem, we come up with
0 < liminf M

= timint ([ ¢/ (0,(T, ) + 01((T,2) = (L)) 0l T12) — 13T 2))d

+ //Q 6—y(t’ T, Yy + O3 (Yru — Y)) Wyu — Yyy)dtdz
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oh
+ //2 %(t,x,u,y + 650u)0udtdo,

T
+ /0 (Il + 0 — T2 + ..+l — allz2)( /F Ou(2u,, — 20 + Ou)do,)dt

7 [ [ (W) 0 (02))0, (i + Bt = ) (i = 93]

where 0; = 6;(t,z) € [0,1] a.e. in Q for i = 1,2,3,4. Observe that 6;(yyu —
y,) — 0 strongly in L*(Q) as § — 0 for ¢ = 1,2,3,4 and that a,(yy.) + o (y,) €
L*(0,T; L?(2)). Then by using assumptions (i)-(iii) and the Lebesgue dominated
convergence theorem, we obtain

0< / &' (y4(T, z)) ETudac—l—// (t T, Yy) + 270, (yy) oy () Ludtdz

(3.11)
2 —
+// 5 (t, 2, uy)udtdo, +2p/ lluy — “||L2(1“)(/F(”v — @)udo,)dt.

The latter implies (3.10) and ends the proof of the theorem. O

4. Necessary Optimality Conditions with State Constraints

In the last part of this paper we develop a limiting procedure to derive neces-
sary optimality conditions for the original Dirichlet boundary control problem (P)
with pointwise state constraints. This procedure is based on passing to the limit in
necessary optimality conditions for the approximating problems (P.,) by taking into
account the strong convergence results established in Section 3. Analyzing these nec-
essary optimality conditions (Theorem 6), we can observe that to pass to the limit
therein one needs to get a uniform bound for the perturbation term o/ (-)a,(:) in
an appropriate space. Such a bound does not follow from the previous cons1derat10n
without additional assumptions. To furnish this let us impose a constraint qualifica-
tion condition (CQ) for the state constraints in problem (P). In what follows || - ||e
and || - ||; denote the norms in L*(Q) and L'(Q), respectively.

(CQ) There exist i € Uyg and n > 0 such that for all { € L®(Q) with ||{|lc <1
the mild solution § of (2.1) corresponding to @ satisfies the condition
a<gt,z)+n¢t,z) <b ae inQ.

Observe that this qualification condition is different from the classical Slater in-
teriority one in the corresponding space; compare, e.g., [13]. In particular, (CQ)
does not imply that the set of feasible trajectories y has nonempty interior in the
space C([0,T]; H'/2=(2)). We refer the reader to [3] and [4] for more discussions on
the related qualification conditions for the case of parabolic systems with distributed
controls.

The next lemma provides the desired uniform estimate that turns out to be crucial
in our limiting procedure.

Proposition 7. In addition to the assumptions made above we impose the qualification
condition (CQ). Then there exists a constant C > 0 such that

(4.1) [vel (7)o (yy)lh < C ¥y > 0.
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Proof. Given 4 in (CQ), let us substitute u = @ — u, into (3.11). Employing the
monotonicity of a,(-), one has

0< / @' (yy(T, 7)) L1 (T d:v+// 3 2 (t, x,y,)L(G — u,)dtdz
+ [ oott,3,,)( — w)dedo,
20 [ Tua(t) — 053 oy — (i — o))
+2 / /Q ol (yy oy (yy) (L1 — Luy)didz

< [ P (TN @) v, @)z + [ [ g_z(t,x, 1) — y)dido

] %(t,x,u»(a — u)dido,
420 [ ()~ 5O [ oy — D@ — )
—2 //Q vl () (i (gy) — (G + 1)) (yy — § — 1€)dtdz
— 2 [ [ 76, (4o ()l

< [ PN GT,) (T + [ [ 2t 0,,)5— v, e

+//a (t, %, (@ — uy)dtdo,
+ 2p/0 [l (2) = (t)”LZ(F)(/( — 0) (% — uy)doy)dt
—2n //Q vol (yy)a (yy)Cdtdr V¢ € L*°(Q) with [|¢]le < 1.

Now taking into account Theorem 5, we can find a constant C' > 0 independent of «y
such that

/ [ 16l (wn)en ()Gt < € Wy >0 C € L2(@) with [[Cloo < 1.

This estimate yields (4.1) and ends the proof. O

Let us denote by ba{Q) the space of bounded additive functions (generalized mea-
sures) on subsets of ¢ that vanish on sets of the Lebesgue measure zero. It is well
known that this space can be identified with the dual space to L°(Q) in the following
sense: for each A € (L°°(Q))* there is a unique A € ba(Q) such that

Aw) = / [ w(dide) Y € L2(Q).

In the sequel we do not distinguish between A € (L*°(Q))* and its counterpart
X € ba{Q). Recall that (supp A) means the support set for A € (L*°(Q))* where this
measure is not zero. In what follows the convergence along a generalized sequence
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means the convergence of a net in the weak* topology of the space (L®(Q))* where
the topological and sequential limits are different.
For the optimal trajectory §(¢,z) to problem (P) we define the set

Qu = {({t,z) € Q| §(t,z) = a or §(t,z) = b}

where the state constraints (2.2) are active. This set plays an essential role in the
results below.

Proposition 8. Under the assumptions made in Proposition 7 there exist A € (L*(Q))*
with supp A C Qu and a generalized sequence of {v} along which

290, (), () — A weakly® in (L¥(Q))* as 7 — 0.

Proof. We just sketch the proof referring the reader to [16] for more details in a
similar setting. Let us define

Ay (w) =2 [ [ el )en v Jwdidn o € L(Q)

for each v > 0. Proposition 7 ensures the uniform boundedness of {A,} in (L*(@))*.
Due to weak* compactness of the unit ball in a dual space we find A € (L°(Q))* and
a generalized sequence of {v} along which

(4.2) %irr(l) A (w) = lyin%Q//Q Y0 (Yy) oy (yy )wdtde = A(w) Yw € L=(Q).
It remains to show that supp A C Qu. To this end we observe that
meas({(t,z) € Q| §(t,z) < a or F(¢t,x) > b})=0.
Thus assuming that supp A ¢ Q,, one has a set @ with the properties

(4.3) meas(Q) >0, MQ)#0, and Q C {(t,z) € Q| a < F(t,z) < b}.

Now arguing in the same way as in [16], we find a nonnegative function ¢(p) such
that ¢(p) — 0 when p — 0 and

|A(w)| < c(p) Yw € L¥(Q), suppw C Q
for all p sufficiently small. This yields
A(w) =0 Yw € L*(Q), supp w C Q

which contradicts (4.3) and ends the proof of the proposition. ]

Now we are ready to derive necessary optimality conditions for optimal solutions
to (P) by passing to the limit in (3.10). Due to the weak* convergence result of
Proposition 8 we need to show that the operator £ defined by (2.5) is continuous from
L*°(3) into L*(2) (note that this is different from Proposition 1). The next theorem
establishes this property and provides the desired necessary optimality conditions for
the original state-constrained problem (P).
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Theorem 9. Let (4, ) is an optimal solution to problem (P) under all the assumptions
made above. Then there is a measure A € (L*°(Q))* with supp A C Qap such that

0< //[ (L0 (9))(¢, ) +£*(gy(t z,7) + gg(t,x,ﬂ)](u—ﬂ)dtdam

+ / / )(L£*\)(dtdo,) Vu € U,

Proof. Let {(u,,y,)} be a sequence of optimal solutions to problems (P,) that
strongly converges to (%,%) due to Theorem 5 satisfying the necessary optimality
conditions in Theorem 6. It follows from (3.10) that

o< [ / (L3 ) (6,9) + L5 6, 2,7) + 200 () )
(4.5) 4 o o % (4, )] (u — w,)dtdor,

T
+2p /O ot — @[22 ( /]F (s — @) (6 — y)doy)dt Vuu € Upa.

Our purpose is to pass to the limit in (4.5) as v — 0 along a generalized subsequence.
Due to Proposition 1, Theorem 5, and the well-known continuity of the operator
L£*: L*(0,T; L*(2)) — L*(0,T; Lz(P)) (see, e.g., [11]) we have ¢'(y,(T},-)) € L*(Q) C
H~1/2+¢(Q) for all v > 0 and

.00 Oh
J 20 @ ) + £7(5) (2 9)) + 5 (2, )] (0 = )ity —

[ lese @) + £*(g—§(t,x,37)) + %(t,x,ﬂ)](u _ a)dtdo, Vu € Us.

Since the last term in (4.5) converges to 0, it remains to show that

(4.6) / /Z (1 — ) L4290, (yy) oy (1)) by — / /E (u — T)(LN)(dtdoy)

as v — 0 for any u € Uq. Due to Proposition 8 property (4.6) immediately follows
from the weak* continuity of the operator £* : (L*®(Q))* — (L*°(X))*. In turn, this
weak* continuity of the adjoint operator is a direct consequence of the strong conti-
nuity of the operator £ in (2.5) considered from L°(X) into L>(Q). To justify the
latter property we follow [16] and invoke some results from the theory of generalized

solutions to parabolic equations.
Let v € L3(X) be a boundary condition in (2.1). According to [12, Theorem 9.1],
there is a unique y(v) € L2(Q) called a generalized solution to (2.1), such that

4.7) / / o+ AZ)dtdr = — / / v P do,

Vze{ze€ H21(Q) | 2(t,z) =0, (t,z) € &, 2(T,x) =0}

where v, is an outer normal to I' associated with the operator A.

Let v € L*(Z) and let y = Lv be the corresponding mild solution to system (2.1).
We are going to show that such y coincides with the generalized solution to (2.1) in
the sense of (4.7). Since L®(X) C LP(0,T; L*(T")), we may consider v as an element
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of LP(0,T; L*(T")) and use the fact that D(X), the space of C* functions on ¥ with
compact supports, is dense in LP(0,T; L*(T")). This gives a sequence {v,} C D(X)
such that

v, — v strongly in LP(0, T; L*(T")) as n — oo.

Since for each v, € D(X) system (2.1) has a unique classical solution y,, we
automatically get that y, = Lv, and it satisfies (4.7). Moreover, it follows from
Proposition 1 with ¢ = 1/2 that

“[,11 — yn”C([O’T];L?(Q)) = ||£1) - Evn“c’([(]’T];LZ(Q)) — 0 asn — oo.

Taking into account all these facts, we have

l// Ly ——+A* dtdx—l—// vgf—dtdam|

< |//Q(£u—yn)( g + A%2) dtdm|+|//(v dtdam|

(9
< LY = Yalleqoryz2opll — =7 Pl A* Z||L2(0TL2(Q))T /2
+[lv - Un”Lp(o,T;Lz(r))||m”L2(0,T;L2(F))T1/q — 0 asn — o0

where § := M Thus we obtain
p

-2

// Lo(—— —I—A* Ydtdx = // Ua_y;dtda“’

Vze{ze H2’1( Q) | 2(t,z)=0, (t,z) € X, 2(T,z) =0}.

The latter means that the mild solution y = Lv is also a generalized solution to (2.1)
for any v € L*°(X). Using the uniqueness of generalized solutions and the factthat
the generalized solution operator is a continuous map from L*®(X) into L®(Q) (see,
e.g., [12, pp. 205-206]), we conclude that the linear operator £ is continuous from
L*(%) into L*°(Q). This completes the proof of the theorem. O
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ABSTRACT. Consider the heat equation with a nonlinear function « in the boundary con-
dition which depends only on the solution u of the initial-boundary value problem. The
unknown function « belongs to a set of admissible functions. For this problem the existence
of a second Fréchet derivative of the control-state mapping is proved. Based on this result
a necessary second order optimality condition is formulated. For the investigated objective
sufficient second order condition are closely connected with stability estimates. Using the
knowledge about stability estimates, it is shown that already for simple cases the usual
sufficient conditions can not be fulfilled.
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1. Introduction

This paper deals with the connection between second order optimality conditions
and stability estimates for the identification of nonlinear heat transfer laws. The iden-
tification problem is formulated as an optimal control problem where the unknown
heat exchange function plays the part of the control. The unknown function « is
assumed as a function of the temperature u. The contro! system under consideration
is governed by a semilinear parabolic equation, hence the control problem belongs
to the class of nonconvex optimization problems. In contrast to parabolic control
problems with convex objective functionals and linear equations, where the list of
references and optimality conditions is very extensive, only a few investigations have
been devoted to the case of nonlinear parabolic equations. In nonconvex problems,
sufficient second order optimality conditions at the optimal point are a substitute for
the convexity. The theory of sufficient second order conditions for twice differentiable
extremal problems in function spaces is known to be more rich and interesting than
that for problems in finite-dimensional spaces. This is due to the so-called two-norm
discrepancy expressing the noncompatibility of the norms needed for second order
optimality condition. This difficulty was resolved successfully by Ioffe [6] and Maurer
[7]. The theory was extended on a class of parabolic boundary control problems in the
papers of Goldberg and Troltzsch [4],[5]. But the investigating type of identification
problems has an other complicate structure. Therefore it is one goal of this paper to
show that it is impossible to get similar conditions for the identification problem.
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To ensure a sufficient optimality condition it is often required that there exist
terms in the objective which depend directly on the control. For that reason the
usual way is using a Tikhonov-regularization. But the Tikhonov-regularization is
also the most popular way to get well-posedness and stability of inverse problems, see
Tikhonov/Arsenin [13], Tikhonov/Goncharskij/Stepanov/Yagola [14]. Hence there is
a close connection between sufficient second order condition and stability in this well-
investigated class of boundary control problems. But this approach has disadvantages
for the application to the nonlinear identification problem. A natural way to handle
the nonlinear identification problem consists in using a compact set of admissible
controls o (that means “admissible laws”). For practical applications it is often easy
to bound the maximal growth of the heat exchange coefficient with respect to the
temperature. The compactness of the set of admissible controls is the main prop-
erty to get statements about stability and well-posedness in suitable chosen function
spaces, see Rosch [8]. In this approach we have no regularity term. By the way, it is
difficult to find a proper function space for the regularity term for the identification
of a heat exchange coefficient depending only on the boundary temperature. These
facts generate an own specific of identification problems. The compactness of the
admissible control set relieves the derivation of several properties. Otherwise, with
the absence of the Tikhonov-term is also absent the natural quadratic convexity term
of the objective with respect to the control. Another difference is caused in the non-
standard structure of the control-state-mapping. Usually the optimality conditions
need no derivatives of the control, but in our case every differentiation of the ob-
jective uses derivatives of the control . For that reason it is necessary to require
C?-regularity of the control in order to get second order conditions.

In this paper we want to discuss second order optimality conditions for the iden-
tification problem and the connection to stability estimates. The optimal control
problem we are going to investigate is to minimize the functional

(1.1) U(a) = / / (ult, z) — q(t, z))2dS,dt,
subject to

Qﬂ(t z) = Agu(t,z)on (0,T] x Q

ot o ’
(1.2) u(0,z) = u’(z) on Q

%(t,x) = oafu(t,z))(¥ —u(t,z)) on (0,T] x I'

where the control « is taken from the set

U = {aeC?d,9,],0 <my <a(u) <M,ms <o (u) <M,
ms < o'(u) < Ms}

In this setting, @ C R™ is a bounded domain with C*-boundary T', T' > 0 a fixed
time, 9 a fixed temperature and q € Ly((0,7) x T') is a given function of “measure-
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ments”. ¥; and ¥, are defined by
Y = minw’irelsfz u%(z))

¥y = max(¥,supu’(z)).
z€eQ
Interpreting the process as a heating problem, the variable u means the temperature
of the material, u° the initial temperature, ¥ the constant temperature of the sur-
rounding medium, and « the unknown heat transfer function, playing the part of the
control.

2. Preliminary results

In this section we introduce some notations and recall known results on the be-
haviour of the parabolic system (1.2), which belongs to the class of semilinear prob-
lems. For convenience we shall apply the theory of analytic semigroups. We shall
heavily rely on results by Amann [1],[2] for semilinear parabolic problems. The as-
sumptions and preparations we shall need here are nearly the same as in Rosch/
Troltzsch [12], where well-posedness of the parabolic system is proved.

In all what follows we work in Sobolev—Slobodeckij spaces W27 (Q) and W2°(Q)
with

1
m<2a<26—<1-|-—.
p p

Note that this inequality ensures the continuity of the regarded functions. The solu-
tion of the heat equation u is looked upon in the Banach space
C([0,T), W2°()) provided that the initial value u belongs to W;?(().

Let A be a linear, positive, and elliptic differential operator. Then the parabolic
equation

du
E = —AU
u(0) = o°

subject to homogeneous boundary conditions gives rise to an analytic semigroup of
linear continuous operators denoted by S(t).
Following [12] we define A: L,(Q) D D(A) — L,y(2) by
D(A)={we W2(Q): 0w/on|p=0}, Aw=(-A+Hw forw e D(4).
Then the initial value problem

w(t) = —Au(t)

u(0) = u°
has the unique solution u(t) = S(t)u’. The semigroup S(t) generated by —A, S(t) =
“exp(—At)" is an analytic semigroup of linear continuous operators in L,(£2).

For solving an initial value problem with an inhomogeneous boundary condition a
special solution of the corresponding elliptic boundary value problem is needed. Let
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g € L,(T). The mapping, which assigns to g the solution v of the elliptic boundary
problem

Av—v=0
(21) o _
877/ _g7

is denoted by N, i.e. v = Ng. Transforming the heat equation with v = we’, we
obtain

Aw(t,z) —w(t,z) = %(t, z) on (0,T] x
(2.2) w(0,2) = u’(z) on
g—:(t,x) = a(w(t,z)e)(¥ —w(t,z)et)e™ on (0,T] x I

Now the semigroup approach can be applied. The operator —A is known to generate
a strongly continuous and analytic semigroup {S(t), t > 0} of linear continuous
operators in L,(Q2), see Friedman (3]. N is a continuous mapping from L,(T') to
W3(Q) for all s <1+ 1/p, cf. Triebel [15].

Regarding the function w as an abstract function w = w(t) with values in the
Banach space Wg"(Q) the nonlinear Bochner integral equation

(2.3) w(t) = / AS(t — s)NB(rw(s)) ds + S(t)u°

is obtained. We refer to Amann [1],[2]. In this equation, 7 denotes the trace operator
and B is the Nemytskij operator defined by
(2.4) B(v)(t,z) = afv(z)e?)(¥ —v(z)eh)e™, v e C(I).
Here the trace operator maps Wg”(Q) into C(T"). Inserting the backward transfor-
mation w = e~*u, we get in turn

¢
(2.5) u(t) = /AS(t — 8)Ne®=afru(s))(® — Tu(s))ds + €' S(t)u’.

0
For each o € U,y we get a unique solution u € C%*([0,T], W2°(Q)). This solution
satisfies the maximum principle
Let us slightly simplify the notation. Denoting the kernel of the integral in (2.5) by

k(t — s) == AS(t — s)Ne®9), we get
(2.7) u(t) = /k(t — s)oTu(s))(® — Tu(s))ds + €' S(t)u’.

The right hand side of the Bochner integral equation (2.7) depends only on the
boundary values of u. For that reason, we shall investigate this equation only on
the boundary. Therefore, it is convenient to introduce the trace of u by z = Tu
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with 7: C%([0, T], W2°(€)) — C([0,T] x T') and to consider the boundary integral
equation

(2.8) z(t)=71 / k(t — s)a(z(s)) (9 — z(s))ds + Te' S (t)u’.
0

Next we define a mapping ® by
(2.9) (Qa)(t) = =(t),

where z(t) is the solution of the boundary integral equation (2.8). It is also possi-
ble to work with weak solutions under reasonable assumptions, but in this case the
derivation of several results is much more complicated. For the reader who prefers
to work with other techniques we will write all equations in the form of PDE. Never-
theless, the solutions are assumed as solutions of the corresponding Bochner integral
equation.

In Résch [9] it is proved that @ is Fréchet differentiable from C*[d, %] to C([0, T] x
T') at a point og. Furthermore, let v be the solution of the initial boundary value
problem

ov

_éf(t’ z) = Agv(t,z) on (0,T] x Q
(2.10) v(0,z) = 0on
%(t, ) = (ap(uo(t, 2))(® — uo(t, ) — ao(uo(t, z)))v

+afug(t, z)) (9 — uo(t, z)) on (0,T] x I,

Then the Fréchet derivative ® ()« is the trace of the solution v on the boundary I'.
We expose the dependence of v with respect to the direction and write for instance vg
which means v is the solution of (2.9) for & = . This notation is useful for derivation
of the second derivative which follows in the next section.

3. Second Fréchet derivative

In this section we want to prove that the mapping ® has a second Fréchet derivative
which is the base of the second order optimality conditions.

Theorem 3.1 (Existence of a second Fréchet derivative). & has o second Fréchet
derivative as mapping from C2%[91,9,] to C([0,T] x I') in every point cg € Usgq.
Moreover, let w be the solution of

%—'I:(ﬁx) = Ayw(t,z) on (0,T] x Q

(3.1) w(0,z) =0 0nQ
00 4,2) = (eh(uolt, 2))(9 — ult,2)) ~ 20(ua(t,2)) s, ) 1,2
+(ag(uo(t, ) (9 — u(t, )) — oo (uo(t, 2)))w(t, z)
+(7/(u0(t’x))(19 - 'LLo(t, :L‘)) - 7(71’0(t’ CL‘)))’Uﬁ(t, )
+(B' (uo(t, 7)) (I — uo(t, ) — B(uo(t, z)))vy(t, z)on (0,T] x T.

x
x
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In this setting ug is the solution of (1.2) for & = ag. Then the trace of the solution
w is the second Fréchet derivative of ® at the point og in the directions 5 and vy, that
means D" (a)[B,7] = Tw.

Proof: To prove this theorem we investigate two admissible controls ap and oy =
ap + € - v with corresponding solution 4y and u; of (1.2) and corresponding first
Fréchet derivative vy and v; in direction 3 (see (2.10)). Without lost of generality
let ||| = 1. Then we have ||ay — ag|| = €. The goal of the next steps is to show
that the remainder term has the property v; — vy — & - w = o(¢g). Now we discuss the
difference §v = v; — v which solves the parabolic problem

%(t, z) = Agbv(t,z) on (0,T] x Q
(3.2) Sv(0,z) = Oon {2
O6v ,
5, B2 = (a(u(t )0 —w(t 2)) — o (m(t 2)))vr
(3.3) — (i (uo(t, 2)) (9 — uo(t, 7)) — cwo(uo(t, 7))o
+B(ur(t, 2)) (¥ — w (¢, 2))
(3.4) —B(uo(t, z)) (¥ — uo(t, z)) on (0,T] x I.

It is easy to see that only the boundary condition is interesting. For that reason we
discuss only this part in the next. To shorten the notation we drop the arguments ¢
and z. First we discuss term (3.4):

Blu) (8 —ur) —B(uo) (9 — o) = Blur) (¥ —u1) —Blur) (¥ —uo)
(3.5) + Bu (9 — uo) — Bluo) (9 — uo)
= —B(u1)(us —uo) +(B(u1) — H(u0)) (¥ —uo)
= (=B(uo) + B'(u0) (¥ — uo))vye + 0(€)
Now we discuss term (3.3):

(0 (ur) (9 — wr) — @ (u))v1 — (g (u0)(¥ — o) — cvo(uo))vo

(3.6) = (0 (u1) (9 — u1) — a(u1))vr — (@ (ur)(¥ — uo) — ca(uo))vs
3.7 +(f) (1) (9 — o))v1 — (0 (uo) (I — o)1

(3.8) +( (o) (¥ — ug) — a1 (uo))v1 — (g (uo) (¥ — o) — ao(uo))vr
(3.9) +(0ip(uo) (¥ — ug) — ao(uo))v1 — (i (o) (¥ — uo) — ao(uo))vo

Next we handle the term (3.6)-(3.9). Term (3.8) is easy:
(@1 (o) (¥ — uo) — ar(uo))v1 — (eg(uo) (¥ — o) — cxo(uo))vs
(3.10) = (7 (uo) (¥ — o) — ¥(uo))v:
= (7' (uo)(¥ — o) — ¥(uo))vp + ofe)
For term (3.7) we get
(0 (un)(F = uo))r — (e (o) (F — uo))vr = (0 (1) — 0 (u0))(F — wo)vr
(3.11) = off (uo) (¥ — up)vyv1€ + 0(€)
o (uo) (¥ — ug)vyvge + o(e)
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Similar we deal with term (3.6)

(0 (u1) (9 — ug) — a(u))v1 = (@7 (wa) (9 — uo) — e (uo))vr
(3.12) = (=i (ur)(u1 — o) — (n(u1) — a1 (uo)))vr
= —204 (u1)v,upE + 0(€)

Now we discuss the term
(3.13) rT=U —Vp—€-W

which is the remainder term. This remainder solves a parabolic problem. Using the
equations (3.5) and (3.10)-(3.12) we get:

%(t,x) = Agr(t,z) on (0,T] x Q

(3.14) r(0,z) =00n

%(t, z) = (ag(uo(t, ) (F—uo(t, z)) —ao(uo(t, z)))r+o(e) on (0,T]xT.

For that reason r = o(e) holds and ® has a second Fréchet derivative. O

4. Second order conditions and stability estimates

The two times Fréchet differentiability of ® is the key point to formulate second
order conditions. First of all we recall the necessary first order condition. In Rdsch
[10] we find the two formulations

T
(4.1) W(ao)[f] = 2 / / vs(t, 2)(uo(t, ©) — q(t, 2))dS,dt > 0
or

and

T

(4.2) T'(a0)[] = 2 / / Bluo(t, 2))(® — uo(t, 2))yo(t, z)dS,dt > 0.

0

where 1 is the solution of the adjoint system for oo = o, u = up

—%—z—(t,x) = Ayy(t,z) on (0,T] x Q
(4.3) y(T,z) = Oon§

5, B2) = (@(u(t,2)(0 ~ult,2)) - alult, )y
+u(t, z) — q(t,z) on (0,T] x I.

Based on theorem 3.1 about the second Fréchet derivative it is easy to formulate
second order optimality condition.
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Theorem 4.1 (Necessary second order optimality condition). Let o be an optimal
control with associated state ug. For all admissible directions § = a — o, o € Uga
with U'(ag)[8) = 0 the necessary second order condition

(4.4)  V"(a0)[B, 4] =2 / / wes(t, o) (uo(t, z) — q(t, 3)) + va(t, 7)2dS,edt > 0

holds.

In this setting wgg is the solution of (3.1) with and v = 8. The proof is very simple
and for that reason we resign to sketch it here.

Proposition: It makes no sense to formulate sufficient second order conditions. For
very simple cases such properties can not hold.

Let us now discuss sufficient second order optimality conditions. Usually sufficient
optimality conditions require one or both of the conditions

(4.5) V(e0)(B] = 6|8l
(4.6) U(e)}B, 6] > 6llBl°
for all admissible direction 8 and a positive . First the norm of 3 is the norm of the
differentiation but in several applications it can be weakened with a other norm.
We will see now that such conditions cannot hold for the simplest case. For that
purpose we choose an example for which is ¥(ap) = 0, that means there exists an
exact solution. thus we can replace the “measurements” ¢ by the corresponding state
ug. Using formula (4.1) we get easy ¥'{ag)[8] = 0 for all directions 8. For that reason
a condition of type (4.5) cannot work here.
We assume now that a condition of type (4.6) holds which a suitable norm.

(4.7) " (a)[8, 8] = 6116

We investigate an admissible control & = ap + 3 with corresponding state u. Using
the Taylor expansion we have

U(0) = ¥(an) + V()] + %ﬁ’”(ao)[ﬁ,ﬂ] +o(l1811&2)

- gwaom,m +o([|811%2)

If we have in (4.6) the C*-norm, then we get

(4.8)

(4.9) U(ao) > 682
for a positive §. Using the definition of ¥,
(4.10) llw — woll 3, omyxry = 611812

holds. With a new 6 > 0 we get
(4.11) lu — wollzo(o.1xry 2 Sl — w2

We can interpret inequality (4.11) as a stability estimate. For the simple case Q2 =
[0, 1] we find several stability estimates in Rosch [11]. An essential point in this paper
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is the discussion under which assumptions estimates of the more general type
(4.12) [l — woll > el — cxo]”

can be hold. First of all the norm of the difference of the controls has to be evaluated
only on a smaller set as [, %] the so-called reference set. Variations outside of this
set have no influence of the state. This fact compiles several investigation but it is
not a crucial point. We only recall here the definition of reference sets.

Definition: Let o € U,y and u the corresponding solution of (1.2).
The set M :={u: @ =u(t,z), t €[0,T] z €'} is called reference set of c.

In the illustrative example and the concluding remark of this paper we can see that
for a very simple example we can not expect Lipschitz type estimates

(4.13) llu — ol = ¢fla — v

with the same norms for u and « (for instance C or Ly).

Inequality (4.11) requires much more than that namely a Lipschitz estimate of the
Lo-norm of u with respect to the C?-norm of . May be it is possible to weak the
norm on the right-hand side of inequality (4.11). To ensure that all terms of the
second Fréchet derivative make sense we must necessarily require that the increment
a—oy belongs to C%'. Thus the L,-norm or a weaker norm for a—ay is unimaginable.

Summarizing these deliberations, we notice that already for simply cases neither
the sufficient estimates of type (4.5) nor sufficient estimates of type (4.6) hold. Nev-
ertheless, the investigation of the second derivative delivers useful results. First of
all we have the necessary second order condition. Second we are able to construct
second order descent algorithm. In this context second order means using second
order information not quadratical convergence.

In this context it seems to be a way out to use an additional Tikhonov-term. But
this way has disadvantages. Because of the dependence of the temperature of o we
have to discuss what means ||a|/3,. If we choose the norm over the reference set (for
instance Lo(M)) then we get the problem that every o generates its own reference set.
For that reason the norm is not differentiable. The use of ||a(w)||L,0,m)xr) geneates
additional differentiation term because of the dependence from «. Possibilities to
overcome this problems could be the use of ||a(g)||z,(o,7)xr) or an iterative Tikhonov
regularization ||c(u,)||L,(0,1)xD)-

The investigations of this identification problems shows that for such problems it
is necessary to find new ways. It is imaginable that the function of the sufficient
second order condition can be fulfilled by a stability estimate of the type (4.12). In
[11] we find several estimates of this form for the one-dimensional case. For instance
it is possible to get the inequality

(4.14) lu—wollz, = clle — aollciay

where M denotes the reference set of op. By means of such properties and the
knowledge of the second order information it should be possible to construct numer-
ical algorithms and to prove convergence rates. These are the goals of the future.
The investigation of this papers show that the standard way can not be gone for this
type of identification problems.
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ABSTRACT. A model-based LQR method for controlling vibrations in cylindrical shells is
presented. Surface-mounted piezoceramic patches are employed as actuators which leads
to unbounded control input operators. Modified Donnell-Mushtari shell equations incorpo-
rating strong or Kelvin-Voigt damping are used to model the system. The model is then
abstractly formulated in terms of sesquilinear forms. This provides a framework amenable
for proving model well-posedness and convergence of LQR gains using analytic semigroup
results combined with LQR theory for unbounded input operators. Finally, numerical ex-
amples demonstrating the effectiveness of the method are presented.
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1. Introduction

The use of shell models to describe structural dynamics is pervasive in applications
ranging from noise reduction in aircraft to flow control in flexible pipes. While general
shell equations can be used in a variety of geometries, they all share the property that
component displacements are coupled due to the geometry. This leads to significant
challenges when developing appropriate models and approximation techniques, and
constructing effective controllers.

In this paper, we consider cylindrical shells due to their prevalence in applications.
Control is provided by piezoceramic patches bonded in pairs to the surface of the shell.
These transducers provide significant actuating capabilities due to the piezoelectric
effect in which input voltages generate strains in the patches. Utilization of the
converse piezoelectric effect (strains produce voltages) also allows the patches to be
employed as sensors. When combined with their light weight, space efficiency and
reasonable cost, these properties make the patches highly effective control elements
in a variety of applications. From a mathematical perspective, the use of surface-
mounted piezoceramic patches leads to unbounded control input operators.

*This research was supported in part by the National Aeronautics and Space Administration
under NASA Contract Number NAS1-19480 while RCS was a visiting scientist at the Institute
for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center,
Hampton, VA 23681. Additional support was also provided in part under NASA grant NAG-1-1600.
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Experimental work has already demonstrated the potential for success when em-
ploying the patches as actuators in applications involving cylindrical shells [8, 13].
However, these initial investigations have not, in general, utilized the full potential
of the patches due to limitations in hardware, models, approximation techniques and
control laws. For example, a common means of approximating shell dynamics to yield
systems which are ultimately used to calculate control gains is through modal expan-
sions [10]. However, closed form expressions for the modes can be determined only
for a limited set of models with severely restrictive boundary conditions. The use of
incorrect modes when calculating control gains can lead to loss of control authority
and possible controller instabilities.

In this paper, we present a model-based method for controlling shell vibrations.
For simplicity, the Donnell-Mushtari shells equations with Kelvin-Voigt damping are
used as a model (the assumption of strong or Kelvin-Voigt damping is reasonable and
typical for many shell materials such as aluminum). The methods are general, how-
ever, and can be applied to higher-order models (e.g., Byrne-Fliigge-Lur’ye model) if
the application warrants. A general Galerkin method based on splines is then used to
discretize the infinite dimensional system. Through the choice of basis, the method is
significantly more flexible than general modal methods when considering the bound-
ary conditions and material nonhomogeneities which arise in typical applications.

The model and approximate system are then employed in an LQR full state feed-
back theory to obtain feedback gains and, ultimately, controlling voltages to the
patches. While full state measurements are not available using current instrumen-
tation, and hence the techniques cannot directly be implemented in experiments,
they provide an important first step in the design of effective compensators based
on state estimates calculated using a limited number of observations (see [5]). The
consideration of the LQR performance also illustrates properties of the system and
model-based control techniques and facilitates investigations regarding issues such as
patch number and configuration. Finally, the consideration of the problem provides
a step toward the development of model-based controllers for fully coupled structural
acoustic and fluid /structure systems involving cylindrical shells.

The strong and weak forms of the Donnell-Mushtari shells equations are outlined in
Section 2. In presenting this model, care is taken to include both passive (material)
and active (actuator) contributions due to the patches. An abstract form of the
model, based on sesquilinear forms, is also presented. This provides a natural setting
to prove model well-posedness and convergence properties of the LQR control law.
LQR full state feedback laws for systems with no exogenous force or forces which
are periodic in time are presented in Section 3. In the former case, convergence of
the approximate suboptimal gains to the optimal gains for the infinite dimensional
system is proven using analytic semigroup theory in combination with LQR results for
unbounded control input operators. A Fourier-Galerkin method for approximating
the system dynamics is outlined in Section 4, and the effectiveness of the LQR method
for periodic forces is demonstrated through a numerical example in Section 5. This
example demonstrates that through the use of the model-based methodology with
general Galerkin approximations, significant attenuation in shell vibrations can be
obtained using piezoceramic patches.
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2. PDE Model

The system under consideration consists of a thin cylindrical shell with surface-
mounted piezoceramic patches. It is assumed that the patches are mounted in pairs
with edges aligned with the circumferential and longitudinal axes of the shell. The
edges of the shell are taken to be fixed in accordance with common experimental
clamping techniques.

A A
ith patch

]
(Xi.0)
v [J

Figure 1. Thin cylindrical shell with surface mounted piezoceramic patches.

To specify the geometry for the corresponding model, we consider the longitudinal
direction to be aligned along the z-axis as depicted in Figure 1. The displacements
of the middle surface in the longitudinal, circumferential and transverse directions
are denoted by u, v and w, respectively while the length, thickness and radius of the
shell are denoted by £, h, R. The region occupied by the middle surface is denoted by
Ty. Finally, the shell is assumed to have mass density p, Young’s modulus £, Poisson
ratio v, Kelvin-Voigt damping coefficient ¢p and air damping coefficient p.

Actuator and/or sensor capabilities are provided by s pairs of surface-mounted
piezoceramic patches. It is assumed that all the patches have thickness Ay, Young’s
modulus E,., Poisson ratio v, and Kelvin-Voigt damping coefficient cp,,. Further-
more, it is assumed that the glue bonding layer provides negligible contribution to the
structural dynamics (the reader is referred to [3, 5] for details concerning the incor-
poration of differing patch characteristics and bonding layers in the ensuing models).
The region covered by the 5** patch pair, with edges at 1;, T2, 01;, 0a;, is delineated
by the characteristic function

1, zu<e< @y, 61; <0< 0y

e; ,9 = .
Xpes (7, 6) {0, otherwise .

The indicator function S,.,(z,8) = S12(z)S12(0) , where

1, z<(@y+2)/2 1, 0<(61+02)/2
Siap(r)=4 0 , z=(zu+z6)/2 , Si200)=4 0 , 0= (0nu+0)/2
—1 , x> (7 +22)/2 =1, 0> (61;+6)/2
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delineates the sense of the forces generated by the i** pair. The symmetry of
the function arises from the property that for homogeneous patches having uni-
form thickness, equal but opposite strains are generated about the point (a‘si, H_i) =
(@15 + 22:) /2, (1 + 02:)/2).

2.1. Strong Form of the Modeling Equation. We consider here the modified Donnell-
Mushtari equations

8%u ON,; ONg, & )pes
Rohgm — B, ~ ~op — ‘RZ — o (@)
(92'0 8N9 Nzg N 3(N9)pel
Rphﬁ‘"a?_Raz —R%—; 90 Spei( 9)
2.1)
(9211) ow 62Mz 1 82M9 62Mz9
Roh s + Bugr — B s R a0z 2oza0 T

~ > 02(M ) e; 1 82(Mg) e;
“Rh- X | YR o

=1

as a model for the thin shell dynamics. As detailed in [3, 5, 9], these equations are
obtained through force and moment balancing with only low order terms retained.
Here M,, My, My, and M,y are internal moments while N,, Ny, Ny, and N denote
internal force resultants. External surface forces are denoted by §,ds, ¢, whereas
the external resultants (line moments and forces) generated by the it" patch pair are
designated by (My)pe; (Ma)pe;, (Nz)pess (No)pe;-

Expressions for the internal force and moment resultants are derived under the
assumption that stress is proportional to a linear combination of strain and strain
rate. This yields a model which incorporates Kelvin-Voigt or strong internal damping.
As detailed in [3, 5], the resultants N, Nyg, Nog, My, My, My, derived under this
assumption are

Eh

(22) Ne = 71— 5 (€2 + veo) +Z

Epehpe
1~—

(€2 + Vpe€h) Xpe; (T 9)

he
Jﬁim+%mmw®

Eh e Ppe
Ny = Ny, = 2(1—+’)'5x0 + Z ‘(‘1—_’_—)5:56Xpe1 (z,6)

CDh . s Cp, hpe .
oy e P ¢ o Xpes (T, 0
Eh3 s 2F.a3
Mz = ———12(1 — ) (Kax + Z/K;G + Z (1 __“ )' (sz + I/pel{,g) pei({L’, 9)
cph? s 2chEa3

(K + vicg) +

=1

22 ("% + Vpe’£9) Xpe; (:L‘ 6)

pe

BT <3(1-
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E 3
+
24(1 + v Z 3(1 + Vpe

CDh3 d CDp as
= e: (T, 0
+24(1+I/T+Z 3(1 + v50) 30+ ) X (®0)

My = My, =

) TXPei (:L‘, 9)

where the constant ag = (h/2 + hye)® — h®/8 results from integration through the
thickness of the patch. Expressions for the resultants Ny and My can be obtained by
replacing €, €9, £z, K¢ in the expressions for N, and M, by &y, €4, Ky, K, TESpectively.
The midsurface strains and changes in curvature for the Donnell-Mushtari model are

_0Ou _lov w _Ov_ 10u
3 2 =%z TR0 R ' "oz Roo
| o O 10w 20w

SR T TR2oe =~ TROz06

Note that for the undamped shell which is devoid of patches, the resultant equations
(2.2) reduce to the classical Donnell-Mushtari expressions

N = Eh ?_1_{_}_ 6v+w Mo —ER? @4_182_10
T (1-1?) |82 00 » T T 12(1—0v?) | 822 T R2 062
N, -—_..Eh_ 1@4__13_1_1/@ M, _____—_Ehg iéa_w_H/Qfg
T O-® R0 TR oz’ 0T 20— |R2062 T U os2

Eh [Ov 10u —ER® 0w
NzO—Nem—m [5;-1-%%] Mze-—Moz—mm

(e.g., see [9]).

To characterize the external or active patch contributions, it is typical to start
with the assumption that the strains generated by a patch are proportional to the
applied voltage [3]. Since differing voltages can be applied to the outer and inner
patches in the pair, we will differentiate between the two with Vj;(¢) and Vis(t) used
to denote the voltages to the outer and inner patches in the i** pair, respectively.
The proportionality constant relating the generated strain to the input voltage is
designated by ds;. As detailed in [3], the total external moments and forces generated
by the patches are

_ —‘Epe d31 [(QQ as > (ag as ) j|
(Mz)pei - 1— Vpe hpeX:Dei(x’ 0) 2 +3R Vzl 9 3R VLQ
—E,. dsa
(MQ)Pei = 1 — 5 ) 23; 2XP6i (1’, 0)[‘/;1 - sz]
pe pe
(2.4)
(N,), = Do B, 0 avs (@, 9)[(h +22 )V +(h _i‘z_)v]
T/pe; 1— Vpe h Xpez 'pe; pe 2R il pe 2R 32
-FE .
(No)Pei 1— IZJ) d31Xpei (:E, H)Spei (-737 6) [V;l - VzQ]
pe



252 LQR Control of Shell Vibrations via Piezoceramic Actuators

where az = (h/2 + hpe)? — h?/4 and a3 = (h/2 + hye)® — h*/8. When substituted
into (2.1), the expressions (2.4) provide the input from the patches when voltages are
applied.

Finally, the fixed-edge boundary conditions

_dw_
- =

are used to model the end behavior of the shell. These boundary conditions are
appropriate for experimental setups in which heavy endcaps prevent edge movement.
Note that alternative boundary conditions such as simply supported or “almost fixed”
(see [4]) can be employed if edge movement is suspected.

(2.5) U=v=w 0, z=0,¢

2.2. Weak Form of Modeling Equations. The strong form (2.1) of the modeling
equations requires first and second derivatives of the moment and force resultants.
As noted in (2.2) and (2.4), both the internal and external moment and force resul-
tants are discontinuous due to the piezoceramic patches. Hence formal analysis and
approximation using the strong form of the modeling equations lead to difficulties
due to differentiation of Dirac distributions.

To alleviate these difficulties, it is advantageous to consider a weak form of the
modeling equations which can be derived from Hamilton’s principle (energy consider-
ations). While equivalent to the strong form under suitable smoothness assumptions,
the weak form provides a more natural setting for analysis and approximation.

The state variables for the problem in second-order form are taken to be y =
(u,v, w) in the state space H = L*(T'g) x L*(To) x L*(T'o). For the fixed-edge boundary
conditions (2.5), the space of test functions is taken to be V' = H} (Do) x H(To) x
HZ(To) where

H}(To) = {n € H'(T'o)|n(0) = n(¢) = 0}
H2(To) = {n € H*(To)|n(0) = n:(0) = n(£) = nx(¢) =0} .

For ® = (u,v,w) and ¥ = (11,72, 73), the H and V inner products are taken to be

@0y = [ phumidy+ [ phomady+ [ oty
4] 0

To

and
B Eh o 1 ony
{((E,Epe)®,%),, = /F0 {1—1/2 [(Ez-l-l/ée) e + 2R(l V)eLs 0 ]
° 2Epchpe oy 1 om
) R A re)eas g |

Eh 1 Oz
+ /Fo {1 e [(E" tre) g +ag(t ~ Ve,
‘. 2E

Ppe on 1 onz
pe’p — (1 — —_—
p 1— Vge Xpe; (x7 6) [(69 + VPGEE) 60 + 2R(1 VPE)E-'EB ax dfy

+
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+ / ﬂ
To 1—1/2
o? 0?
3 1-v)r 773]

h2
~Tora ket VRe) gos ~ ﬁ 52090

1 __ h? 02
E(eg +ve, )Ts — —1—2(nz + Ul{g)£

Oz

s
+Z 3(1 e) Xpe: (2,6) [ “(€0 + Vpecs )T — a3(iz + Vpero) 55 ’73

_as Py _ay o\ O3
e e T Vpeke) g — LV | DY

where €4, €9, €z, Kz, ko, T are defined in (2.3) and dy = Rdfdz. The dependence of

the inner product on the Young’s moduli is explicitly included in the definition to

provide a notation for defining analogous damping expressions later in this work.
The weak form of (2.1), as derived in [5] from energy principles, is given by

u o . Om . o\ ,
/{Rphat2’71+RN a0 Ve ~ BT RZ e [ =0

6% o, D o\, _
/ {Rph6t2 My + No——~ 80 + RNyo—— 9z - ng??z ;(NG);DEI‘%} d’y =0

(2.6)

92w dw 0%y %3
/{Rphat2 n3+Ruat773+N9773 RM, 5% —RMQ o

d%n 3, 1 *n3
2Mz08 80 RQn773+Z M )pel +E(M9)P61W d7 =0

for all ¥ = (m;,7m2,m3) € V. A comparison between (2.6) and (2.1) illustrates that
in the weak form, derivatives are transferred from the discontinuous resultants onto
suitably smooth test functions. This alleviates the difficulties associated with the
discontinuities and reduces smoothness requirements on approximate solutions.

2.3. Abstract Formulation. To define appropriate sesquilinear forms, we group stiff-
ness components separately from damping components. To this end, we define
0,: VXV —-C,i=1,2by

01(®, ) = ((E, Epe)q)’ ‘I’>V

2.7
(2.7) 02(®, W) = (0D, ¢0,)®, W), + [ puiiydy.
0

Note that {(cp, cp,,)®, ¥)y differs from ((E, Ep.)®, ¥),, only in that Young’s moduli
are replaced by Kelvin-Voigt damping coefficients. It can be directly verified that the
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stiffness form o, satisfies
(H1) lo1 (@, 0)] < 1| @|v|P|y , for some c; € R (Bounded)

(H2)  Reoi(®,®) > co| @[5 , for some ¢y > 0 (V-Elliptic)

(H3)  01(D,¥) = 01(¥, D) (Symmetric)
for all ®, ¥ € V. Moreover, the damping term o, satisfies
(H4) |o2(®, U)| < ca|@|v|¥|v , for some cs € R (Bounded)

. (H5)  Reoy(®,®) > cs|®f2 , for some cs >0 (V-Elliptic) .

Remark 1. The symmetry of o; is dependent upon the choice of shell model and ul-
timately reflects the Maxwell-Betti reciprocity theorem. While the Donnell-Mushtari
model yields a symmetric sesquilinear form oy, other models such as the Timoshenko
shell mode! will not yield a symmetric form.

To represent control contributions, let U = R® denote the Hilbert space of control
inputs and define B € L(U,V*) by

[~ om | 1 Ons
(Bt ¥y = [ 3N G+ 500
Ons 1 0°ns
—(MZ)P&; ) - ﬁ(M(?)pei 562 }dfy

for ¥ € V. Here (,,)y. denotes the usual duality product. Finally, with the
definition § = (1/ph)[dz, ds,dn], we can write the weak form (2.6) in the abstract
variational form

28)  ({(1), Uy y +02(§(t), ) + o1(y(t), ¥) = (Bu(t) + §(8), U}y -

To pose the problem in a first-order form amenable for control applications, we
define the product spaces H =V x H and V =V x V with the norms

(1, Do), = |15 + el
(81, 82)I3 = |1l + |23 -

The state is taken to be z(t) = (y(t),y(t)) € H. Finally, the product space forcing
terms are formulated as

(2.9) g(t) = [ g?t) ] . Bu(t) = { BS( ) } .
The weak form (2.8) can then be rewritten as
(3(2), A)pe y + 0(2(2), A) = (Bu(t) + g(t), A)y., forAeV

G100 0) = 20 = (vou)
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where 6 : V x V — C is given by

o(, %) = — (b2, 1)y + 01(d1,%2) + 022, ¥2)

for ¢ = (¢1,d2),% = (¥1,%2) € V. As proven in [5, page 109], o is V continuous and
for X >0, o(-,) + A (-, ), is V-elliptic. From the continuity of o, it follows that one
can define an operator A € L(V,V*) by (T, A) = (AT, Ay« .

To obtain a strong form of the first-order system which is appropriate for control
purposes, consider the system operator

domA = {(¢1, d2) € H|p2 € V, A1y + Asgo € H}

(2.11) Ao [ _(1)4 _{4 ]

with Ay, Ay € L(V,V*) defined by
(Ai1, G2)ye y = 0uld1,¢2) , 1=12.

Tt should be notated that A is the negative of the restriction to dom.A of A € L(V, V*)
so that o(T,A) = (—AT,A),, for T € domA,A € V.
A strong form of the abstract system model is then given by

2(t) = Az(t) + Bu(t) + g(t) in V' =V xV*

(2.12) 0) = 0.

The rigorous equivalence of solutions is established through the following theorems.

Theorem 1. Under Hypotheses (H1)-(H5) on oy and oy, A generates an analytic
semigroup 7 (t) on V,’H and V*. In terms of this semigroup, the representation

(2.13) ) =T+ | “T(t — 8)[Bus) + g(s)|ds

defines a mild solution to (2.12) for zy € V* and Bu+g € L*((0,T); V*). Furthermore,
this semigroup is (uniformly) exponentially stable on ¥V, H and V*.

Theorem 2. Let z,, denote the semigroup solution to (2.12) given by (2.13) and let
Vyar denote the weak solution to (2.8). Under hypotheses (H1)-(H5), it follows that
Zsg(20, F) = Zyar(20, F) for zo € H and F = Bu+ g € L*((0,T); V*).

Following the convention of [14], we will use the same notation for the semigroups
defined on V,H and V* since each semigroup is an extension or restriction of the
others. Note that dom.A defined in (2.11) is actually doms.A4, the domain of A as
a generator of 7(t) in H. As detailed in Lemma 3.6.1 and Theorem 3.6.1 of [14]
(see also Section IV.6 of [12] and Chapter 2, Theorem 5.2 of [11]), the property that
A generates an analytic semigroup on V,H and V* results from the continuity and
V-ellipticity of . The exponential stability of 7(¢) on H for second-order systems
with strong damping is demonstrated in [1] while the exponential stability of 7 (t)
on V and V* in this setting is proven in Lemma 3.3 of [2]. Finally, Theorem 2 is a
reformulation of Theorem 4.14 of [5] and details can be found therein.



256 LQR Control of Shell Vibrations via Piezoceramic Actuators

3. LQR Control Problem

In the last section, the PDE system modeling the dynamics of the thin shell with
surface-mounted piezoceramic actuators was written in the abstract first-order form

2(t) = Az(t) + Bu(t) + g(t)
Z(O) =2y

in V*. In this section, LQR. control results for both the original infinite dimensional
problem and approximating finite dimensional problems will be discussed. Two cases
will be considered, namely when g = 0 and g is periodic in time. In both cases, it is
assumed that state observations in an observation space Y have the form

(3.1) Zo(t) = C2(t)

where C € L(H,Y) is bounded. The assumption that C is bounded is made to
simplify the exposition and the reader is referred to [2] for arguments pertaining to
the case of unbounded observation operators.

3.1. No Exogenous Input. For the case in which g = 0, the infinite horizon prob-
lem concerns the determination of a control v which minimizes the quadratic cost
functional

(3.2) J(u, ) = /0 “{lez0 + IR} dt

subject to
2(t) = Az(t) + Bu(?)
z(0) = 2.
The positive, self-adjoint operator R is used to weight various components of the

control.
As detailed in [2, 5], if (A, B) is stabilizable and (A,C) is detectable, then the
optimal control minimizing (3.2) is given by

a(t) = —R'B*Tz(¢)
where II solves the algebraic Riccati equation
(AT +TA-TNBR'BIU+CC)z=0 forallzeV

and z(t) = S(t)z. Here S(t) is the closed loop semigroup generated by A—BR™'B*IL.

For implementation purposes, it is necessary to define an approximate system and
controls, and determine convergence criteria for these approximate controls when fed
back into the infinite dimensional system. The approximations are considered in a
Galerkin framework with trajectories evolving in the finite dimensional subspaces
VN ¢V c H. Tt is assumed that the approximation method satisfies the standard
convergence conditions

(HIN) For any z € V, there exists a sequence 2% € V¥ such that [z — Z2V|y — 0 as
N — oo,
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The finite dimensional operators and approximating system are then determined as
follows. The operator AN : VN — VN which approximates A is defined by restricting
o to YN x V¥, this yields

(3.3) (=ANT,A) =o(Y,A)  forall T,A€VY.

For each N, the Cp semigroup on V¥ which is generated by A" is denoted by TN(¢).
The control operator is approximated by BY € L(U, VV) given by

(3.4) <BNU, A>H = (u, B*A),, forallu e U, A eV
while CN denotes the restriction of the observation operator C to VY. Finally, we let
PY denote the usual orthogonal projection of H onto VY which by definition satisfies
() PNTeVY forTeH
() (PYT—T,A) =0 forallAeV".
H
This projection can be extended to P € L(V*, V) by replacing the H-inner product
(T, A),, by the duality product (Y, A),. ,, and considering T € V*.
The approximate problem corresponding to (2.10) with g = 0 can then be formu-

lated as
i N N _ /N N
= (M), ), +o(N(8), ) = (BYu(t),A),  forall A€V
ZN(O) = PNZO .
This has the solution
]
M) = TV PN 2o+ /O TN(t — )PV BN u(s)ds.

The following theorems taken from [2, 5] can be used to establish the convergence
of the approximate gains to their infinite dimensional counterparts for certain classes
of shell models (see specifically Theorem 7.10 and Lemma, 7.13 of [5]).

Theorem 3. Assume that the injection ¢ : V < H is compact. Moreover, suppose
that the damping sesquilinear form can be decomposed as oy = 801 + G, for some
8 > 0, where the continuous sesquilinear form &, satisfies for some A € R

Re 5(6,4) > |6 ~ Noly forall g€V .

Finally, suppose that the operator AT A,, where A, € L(V,V*) is defined by
<A2¢, 77>V* = Ga(¢,m), is compact on V.
If for some w € R and M > 1, T(t) satisfies

|T®) |y < Me , t>0,
then for any € > 0 there exists an integer N such that for N > N,
[T ()P |op < M+, £20

for some constant M > 0 independent of N.
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Theorem 4. Assume that the injection 7 : V — H is compact. Let the sesquilinear
form o associated with the first-order system (2.10) be continuous and V-elliptic.
Assume that the operators A, B,C of (2.11), (2.9), (3.1), respectively, satisfy: (A, B)
is stabilizable and (A, C) is detectable where B € L(U,V*) is unbounded and C €
L(H,Y) is bounded. Consider an approximation method which satisfies (H1N). Fi-
nally, suppose that for fixed Ny and N > Ny, the pair (AN, BY) is uniformly stabi-
lizable and (AY,C") is uniformly detectable.

Then for N sufficiently large, there exists a unique nonnegative self-adjoint solution
IV € L(V*,V) to the N** approximate algebraic Riccati equation

ANV 4TIV AN —TIVBVRTIBYTIN +CVCN =0
in VV. There also exist constants M3 > 1 and ws > 0 independent of N such that
SN(t) = AN -BRTIBN TN gatisfies

S (@) v < Mze™* , £>0.
Moreover, the convergence of the Riccati and control operators

IVPNz 51z inV for every z € V*

[BN*HNPN - B*H] 0,

—
L(H,U)

as N — 00, is obtained.

Example 1. We consider in this example a shell with constant parameters p, E, v, cp.
Such a case would arise if modeling a homogeneous shell or a shell in which the vari-
ance of material properties across regions with actuators is negligible. The sesquilin-
ear forms for this model are specified in (2.7). Due to the constant coefficients, o9
can be written as g, = 60y + 62 where § = %2 and 62(®, ¥) = p fr, wnsdy. 1t follows
immediately that

8
Redy (b, ¢) = “/ro ¢Pdy > —§I¢|‘2/

for all ¢ € V. The boundedness of the operator A, generated by &5 follows directly
from the boundedness of &5. Furthermore, it is noted that A;7* € £(V*, V) can be
written as an operator on V. — V by A7! = A7'4*i where the injections i : V/ —
H,i* : H — V* are compact. Thus A7" is compact on V which implies that ATt Ay
is compact on V since it is formed from the product of compact and bounded linear
operators. Finally, the exponential stability of 7(¢), the stabilizability of (A, B)
and the detectability of (A, B) are guaranteed by Theorem 1. The hypotheses of
Theorem 3 are then satisfied for this system and one obtains uniform bounds on the
approximating semigroups. The convergence of the Riccati and control operators is
then obtained from Theorem 4.

3.2. Periodic Exogenous Input. A reasonable assumption in many mechanical sys-
tems is that g is periodic in time with period 7. The system to be controlled in this
case is

2(t) = Az(t) + Bu(t) + g(t)
2(0) = 2(7)

(3.5)
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and an appropriate quadratic functional to be minimized is

T = 5 [ {les) + RV ue)}de.

Note that the periodic exogenous term g can be used to model inputs such as noise
generated by rotating engine components (e.g., propellers or turbines) or periodic
electromagnetic disturbances.

To guarantee the existence of a unique Riccati solution and control for the system
(3.5), it is assumed that (A, B) is stabilizable and (A, C) is detectable. Furthermore,
it is assumed that g € L2(0, 7;’H) and that B is bounded. Under these conditions, it
is verified in [6] that the Riccati equation

AN+ TA+OBRIBTII+C*C=0

has a unique solution. Furthermore, if  denotes the T-periodic solution of the adjoint
or tracking equation

#(t) = —[A — BR™IBTI|*r(t) + Hg(t)
r(0) = r(7)
and Z is the closed loop solution of
#(t) = [A — BR'BTI|2(t) — BR'B*r(t) + g(t)
z(0) = 2(7),
then the optimal control is given by
(3.6) a(t) = —RIB[Mz(t) — r(t)] .

The LQR theory for this case is less complete than that for systems with no
exogenous input and is currently limited to bounded control inputs B. The synthesis
of the theory for unbounded input operators and periodic exogenous forces is currently
under investigation. The effectiveness of the method is illustrated in the final example
of this work.

4. Approximation Method

A QGalerkin method was used to approximate the solutions u,v,w to the system
(2.6), or equivalently, (2.10). The approximating subspaces were taken of the form

VN = span{B,, } x span{B,, } x span{B,, }

where B,,, B,,, B, denote bases for the u,v and w displacements, respectively. To
exploit the tensor nature of the shell domain I'y and periodicity in 8, the bases were
constructed with Fourier components in # and cubic splines in z (see [7] for details).
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The approximate displacements were then given by the expansions

t a9, :E Zuk 'Uk 9 .’L‘
N(t,0,2) ka(t VB, (8, )

t9:v Zwk By, (6,z).

To obtain a finite dimensional system with matrices corresponding to the finite
dimensional operators in (3.3) and (3.4), the sesquilinear forms oy and oy were re-

stricted to VY. This yields the matrix system

Ky 0 Nyl [ o Ky IV (t)
[0 MNHM@)]_[—KQV —K%HM(td[ ][() [Mo}

kY 0o 1[0 it
0 MM || dVNo)y| | &
where 9V (1) = [ug(t), - . -, unz, V1 (), - - -, U, Wi (2), - . -, Wy, ] contains the N' = N+
N, + Ny generalized Fourier coefficients. The s patch inputs are contained in u(t) =

[us (), - . -, us(t)]T. The reader is referred to [7] for details concerning the construction
of the mass, stiffness and damping matrices M N K , KV | the inputs BN gN (t) and

cp)?
the initial conditions y3, v’
Multiplication by the inverted mass matrix yields the Cauchy equation

V() = ANZN(t) + BNu(t) + g™ (t)
M) = 4,

where 2N € RV = [¢V(t), 9V (¢)]7. This system forms the constraint equations used
in the finite dimensional LQR theory discussed in Section 3.

(4.1)

5. Numerical Example

We consider here an exogenous force g which is periodic in time with period 7 =
10007 (500 Hz). The distribution of the force was taken to be binormal in the
transverse and longitudinal directions and centered at (z,6) = (¢/2,0) and (x ) =
(¢/2,) as depicted in Figure 2. The magnitude of the transverse component g, was
one hundred times that of the longitudinal component §, so as to model an input
consisting primarily of acoustic sources located adjacent to (£/2,0) and (£/2, ).

Six pairs of piezoceramic patches of length 1cm and radial measure /3 were
employed as actuators. The locations and material properties of the patches along
with the dimensions and physical parameters for the shell are summarized in Table 1.

To accommodate the periodic exogenous force g, control inputs to the twelve
patches were computed using the feedback law (3.6). Note that in this formula-
tion, independent voltages are determined for the individual patches. This provides
the capability of generating both inplane forces and bending moments in the regions




R.C.H. del Rosario and R.C. Smith 261

covered by the patches so that longitudinal, circumferential and transverse vibrations
can be controlled.

x - Distribution of Normal Force

: 0 - Distribution
, of Normal Force

Figure 2. Distribution of normal forcing function at # = 0 and § = 7. Observation
lines Ly = {(z,0)|0 < z < 4,0 = n/6}, Lo = {(z,0)|z = 3¢/4,0 < 0 < 27} and
observation point p; = (3£/4, 7/32).

Time histories of the uncontrolled and controlled shell displacements at the point p; =
(3¢/4,7/32), depicted in Figure 2, are plotted in Figure 3. The open loop trajectories
exhibit both a transient response settling into steady state and a beat phenomenon
due to the close proximity of the driving frequency and natural frequencies for the
shell. At this observation point, all three displacement components are reduced by
more than 90% when controlling voltages are fed back to the patches.

Dimensions Parameters
h = .00127m p = 2700 kg/m?
R=4m E=7.1x 10° N/m?
Shell £=1m cp = 2.816 x 107% Nms
v=.33
p = 58.97Ns/m?
hpe = 0001778 m Ppe = 7600 kig/m?
Eye = 6.3 x 10° N/m?
Patches | Centers (z,): (.25,0),(.5,0),(.75,0) |cp,, = 3.211 x 107° Nms
(.25, 7, (5,7), (.75,7) | v = .31
Dimensions: z : 0.1¢cm, 6 : 7/3 ds; =190 x 1072 m/V

Table 1. Dimensions and physical parameters for the shell and patches.
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[ 001 002 003 004 005 008 007 008 0.09 0.1
Time (seconds)

Figure 3. Uncontrolled and controlled shell displacements at the point
p1 = (3¢/4,7/32) ;

(2) longitudinal u,
(b) circumferential v,
(c) transverse w displacements;
—— (uncontrolled), — (controlled).

To illustrate the spatial attenuation due to the feedback of voltages to the patches,
root mean square (rms) plots of the uncontrolled and controlled trajectories along
the axial line L; and circumferential line L, (see Figure 2) are plotted in Figure 4
and 5, respectively. For the open loop case, these plots illustrate a standing wave in
all three components of the displacement. The figures also demonstrate significant
reductions in all three displacement levels, even in regions not covered by patches.
This further illustrates the effectiveness through which the model-based control law

can be used to attenuate shell vibrations.
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Figure 5. Root mean square (rms) displacements along the circumferential line Lo;
—— (uncontrolled), —— (controlled).
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6. Conclusions

A model-based LQR method for controlling shell vibrations has been presented
here. While developed in the context of a modified Donnell-Mushtari cylindrical shell
model, the method is quite general and can be directly extended to other models and
geometries. Under the assumption of strong or Kelvin-Voigt damping (a reasonable
and typical assumption for many shell materials), model well-posedness and conver-
gence of control gains is obtained using analytic semigroup theory combined with
LQR results for unbounded input operators.

The Galerkin method used to approximate the system dynamics utilizes bases con-
structed from tensored Fourier polynomials and modified cubic splines. As discussed
in [7], case must be taken when developing methods for approximating shell dynam-
ics so as to avoid shear or membrane locking. One manifestation of locking is the
existence of model dynamics which are incorrectly approximated by the numerical
method. The use of a numerical method which exhibits locking can lead to a loss of
control authority and potential controller destabilization if the approximations are
sufficiently inaccurate. Further details regarding issues concerning the approximation
of shell dynamics and convergence properties of the numerical method can be found
in [7].

The numerical example demonstrates the effectiveness of the model-based control
method for attenuating all three components of the shell displacement in the pres-
ence of both transient and steady state dynamics. Furthermore, by modeling the
global shell dynamics and patch interactions through coupled PDE and construct-
ing the control law in terms of these PDE, significant reductions in displacement
levels throughout the shell are obtained, even in regions devoid of patches. Numer-
ical implementation of the LQR method in this manner provides a first step toward
the development of model-based state estimators and compensators which can be
experimentally implemented in shell applications.

Acknowledgements: The authors thank H.T. Banks, CRSC, North Carolina State
University, for input regarding various aspects of this investigation.
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ABSTRACT. The standard state space solution of the finite-dimensional continuous time
quadratic cost minimization problem has a straightforward extension to infinite-dimensional
problems with bounded or moderately unbounded control and observation operators. How-
ever, if these operators are allowed to be sufficiently unbounded, then a strange change
takes place in one of the coefficients of the algebraic Riccati equation, and the continuous
time Riccati equation begins to resemble the discrete time Riccati equation. To explain
why this phenomenon must oceur we discuss a delay equation of difference type that can be
formulated both as a discrete time system and as a continuous time system, and show that
in this example the continuous time Riccati equation can be recovered from the discrete
time Riccati equation. A particular feature of this example is that the Riccati operator
does not map the domain of the generator into the domain of the adjoint generator, as it
does in the standard case.
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1. The Discrete and Continuous Time Riccati Equations

We begin by comparing two different optimization problems, namely the discrete
time and the continuous time quadratic cost minimization problems.

In the discrete time quadratic cost minimization problem we study the discrete
time system

Ini1 = Az, + Buy,

(1 yn = Cxp + Du,, neN={0,1,2,... }.

Here u,, belongs to the input space U, z, to the state space H, and y, to the output
space Y. These are Hilbert spaces, and A, B, C and D are bounded linear operators
between the appropriate spaces. The problem is to find a sequence u, € I?(N;U)
that minimizes the cost functional

o

(1.2) W (z0,u) = 3 ((¥n, Yn) + (tn, Ritn)),

n=0

where R is a given positive definite operator on U. Under mild assumptions (sta-
bilizability, detectability, and coercivity of the cost function), the optimal control
u°P* is of state feedback type, i.e., there is a bounded linear operator K such that

Preceding Page Blank
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woPt = Kz for all n € N, and the optimal cost W (zo,u") can be written in the
form

W (g, u?") = (20, Pzo), zo € H,

where P is a positive definite operator on H, the Riccati operator. Moreover, the
feedback operator K and the Riccati operator P satisfy the equations

(1.3) SK = — (B*PA+ D*C),
(1.4) A*PA—P+C*C = K*SK,
(1.5) S=R+D'D+B*PB.

We shall refer to these equations as the discrete time Lure equations. We call S the
sensitivity operator of the discrete time problem, due to the fact that it describes the
sensitivity of the optimal solution with respect to a nonzero closed loop control signal;
cf. [Malinen(1997)]. In the standard case the sensitivity operator S is invertible, and
by eliminating K and S we get the discrete time algebraic Riccati equation

(1.6) A*PA—P+C*C=(B'PA+DC)"(R+D*D+B*PB) " (B'PA+D"C).

See, for example, [Curtain and Zwart(1995), pages 329-332] or [Malinen(1997)).
In the continuous time quadratic cost minimization problem we study the contin-

uous time system

2'(t) = Az(t) + Bul(t),
(1.7) y(t) = Cz(t) + Du(t), te€ R =(0,00),

2(0) = 2.
Here u(t) belongs to the input space U, z(t) to the state space H, and y(t) to
the output space Y, still Hilbert spaces. We suppose that A generates a strongly
continuous semigroup A on H and that D is bounded, and, for the moment, we also
take the operators B and C to be bounded. Naturally, we interpret (1.7) in the strong
sense, i.e., z is given by z(t) = A(t)zo + f§ A(t — s)Bu(s)ds for t € RT. This time
the problem is to find a control u € L*(R*; U) that minimizes the cost functional

(18) Wieo,u) = [ (Wt y®) + (ult), Ru(t) ds

with a positive definite R. Again, under mild assumptions (stabilizability, detectabil-
ity, and coercivity of the cost function), the optimal control u%" is of state feedback
type, i.e., there is a bounded linear operator K such that u%(t) = KzP4(t) for all
t € R*, and the optimal cost W(zo, u’"*) can be written in the form

W(:Eo,UOpt) = <$0,P1‘0>, To € H,

where P is the positive definite continuous time Riccati operator. Moreover, the
feedback operator K and the Riccati operator P satisfy the continuous time Lure
equations

(1.9) SK = — (B*P + D*C),

(1.10) AP +PA+CC=KSK,

(1.11) S=R+D*D.
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Equations (1.9) and (1.11) hold on H and U, respectively, and (1.10) is valid on
the domain dom(A) of A; in particular, P maps dom(A) into dom(A*). Again we
call S the sensitivity operator of the continuous time problem, since it describes the
sensitivity of the cost function with respect to a nonzero closed loop input. In the
standard case the sensitivity operator S is invertible, and we can eliminate X and S
to get the continuous time algebraic Riccati equation

(1.12) AP +PA+CC=(BP+DC)"(R+D*D)”" (B*P + D*C),

valid on dom(A). See, for example, [Curtain and Zwart(1995), pages 316-317] or
[Staffans(1997Db)].

There are some striking similarities and differences between the discrete and con-
tinuous time Lure equations (1.3)—(1.5) and (1.9)—(1.11) and Riccati equations (1.6)
and (1.12). Maybe the most important difference is that the discrete time sensitivity
operator S depends on the discrete time Riccati operator P, but that the continuous
time sensitivity operator S does not depend on the continuous time Riccati opera-
tor P, and, if we ignore the difficulties caused by the unbounded operator A, the
structure of the discrete time Lure equations (1.3)-(1.5) is more complicated than
the structure of the continuous time equations (1.9)—(1.11).

2. The Discrete and Continuous Time
Closed Loop Riccati Equations

Above we have written the discrete and continuous time optimality conditions and
Riceati equations in “open loop” form, i.e., they are written in terms of the original
operators A, B, C, and D in (1.1), and A, B, C, and D in (1.7). It is also possible
to give “closed loop” versions of the same equations.

If we in (1.1) replace u, by a new control v, according to the formula

Up = Kz + Uy, n €N,
then (1.1) becomes
ZTna1 = Aoz, + Buy,
Yo = CsTpn + Dv,, n €N,
where
Ay = A+ BK, Co=C+ DK.
Replacing A and C in (1.3)—(1.5) by A = Ay — BK and C = Cy — DK we get the

discrete time closed loop Lure equations
RK = —(B*PAy + D*Cy),
APAy — P+ C5Cy = —K*RK,

The operator R need not be invertible, but if it is, then we can eliminate K to get
the discrete time closed loop algebraic Riccati equation

A%PAs — P+ CCes = — (B*PAs + D*Cs)* R™ (B*PAg + D*Co) .
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The difference compared to (1.3)—-(1.6) consists in a change of sign in the quadratic
term, and the fact that the operator S has been replaced by R and no longer enters the
equations. Clearly, the invertibility of R is a stronger condition than the invertibility

of S.
In the continuous time case we can proceed in the same way. We separate the
feedback contribution to the control from the external control, and write

u(t) = Kz(t) + v(t), teR,
to get the closed loop system
2'(t) = Apz(t) + Bo(t),
y(t) = Csz(t) + Du(t), te€RF,
2(0) = 2,
where ‘
Aoy =A+ BK, Cs=C+ DK.
Replacing A and C in (1.9)-(1.11) by A = A — BK and C = Cy — DK we get the
continuous time closed loop Lure equations
v RK = — (B*P + D*Cp),
AP +PAs +C55Co = —K*RK.
If R is invertible, then we can eliminating K to get the continuous time closed loop
algebraic Riccati equation
(2.2) ASP +PAs +C5Co = — (BP + D*Cx)* R (B*P + D*Cp) .

Again, the invertibility condition on R is a stronger one than the invertibility condi-
tion on S (whenever D is nonzero). Comparing these equations to the corresponding
open loop equations we see the same changes as in the discrete time case.

The closed loop discrete and continuous time Lure equations and Riccati equations
resemble each other more than the corresponding open loop equations, due to the fact
that the operators S and S have disappeared. However, observe that the closed loop
equations contain an extra implicit dependence on the feedback operators K and K,
hidden in the definitions of Ay, Ces, Acs, and Cs, and that they are less general in the
sense that we need an invertibility condition on R instead of invertibility conditions
on S and &S, respectively.

(2.1)

3. Unbounded Control and Observation Operators

Up to now we have assumed the continuous time control operator B and ob-
servation operator C to be bounded. They can be allowed to be somewhat un-
bounded without any significant nontechnical additions to the theory. This applies,
in particular, to the class of smooth Pritchard-Salamon systems studied in, e.g.,
[Pritchard and Salamon(1985), Pritchard and Salamon(1987)] and [van Keulen(1993)].
However, if B and C are sufficiently unbounded then the structure of the continuous
time Lure equations (1.9)-(1.11) changes, and they become even more similar to the
discrete time Lure equations (1.3)-(1.5). ‘
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The main problem is how to define the term B*P in (1.9) when B is unbounded.
The largest class of systems that we are able to cope with is the class of well-
posed and regular Salamon-Weiss systems; see [Salamon(1987), Salamon(1989)] and
[Weiss(1994a), Weiss(1994b)] for the relevant theory. In this theory the natural do-
main for B* is dom(A*). As before, we want (1.10) to hold on dom(.A), hence (1.9)
should also hold at least on dom(A). Thus, the operator B*P should be defined at
least on dom(A). Since the natural domain of B* is dom(A*), we would like P to
map dom(A) into dom(A*) (as it does in the case of bounded B and C). However,
this will not be true in general, and in particular, it is not true in the example that we
present below. Thus, we are forced to extend B* to a larger domain. This extension
is not unique, due to the fact that dom(A*) need not be dense in the larger domain
(this will be the case in the example given below).

The necessary extension of B* can be carried out in at least two different ways.
Instead of extending B*, [Flandoli et al.(1988)] show that in the case where D = 0
and C is bounded it is possible to find some extension of B*P such that the Riccati
equation (1.12) holds on dom(A) (this result applies to some non-regular systems as
well). However, the definition of the extended B*P given by [Flandoli et al.(1988)] is
quite implicit (it is part of the proof of [Flandoli et al.(1988), Corollary 4.9]), and it
far from obvious how to compute this extension from the original data. Moreover, it
is not clear to what extent that result applies when D = 0 or C is unbounded (as is
the case in the example that we present below).

Our solution, found in [Staffans(1997a), Staffans(1997b)], is quite different. We
impose an extra “regular spectral factorization assumption”, the content of which
is that both the input/output map of the original system and a particular spectral
factor should be regular together with their adjoints in the sense of [Weiss(1994a)].
See [Staffans(1997a), Staffans(1997b)] for details. In order to verify this assumption
for a particular system one needs good information about its input/output behavior.
This type of information is readily avaliable for delay equations but not for general
PDEs. In particular, it follows from [Staffans(1995), Lemma 2.1] that this assumption
is satisfied in the example presented below, but it is still an open question whether
or not it is satisfied in most of the really interesting PDE examples.

The regular spectral factorization assumption enables us to replace the extension of
B*P used in [Flandoli et al.(1988)] by B*P, where B stands for the straightforward
Weiss extension [Weiss(1994a))

(3.1) Bz= Sim BB (81— A) Mz

of B*. As shown in [Staffans(1997b)], if we use this extension, then we must add a cor-
rection term to the continuous time sensitivity operator S and replace the definition
(1.11) of S by

(3.2) S§=R+D'D+ lim BP(al-A)7'B

(this limit exists in the strong sense whenever the regular spectral factorization as-
sumption holds). Equations (1.9) and (1.10) remain valid (with B* replaced by B’).
Observe that (3.2) agrees with (1.11) whenever B is bounded. As in the discrete time
case, it can be shown [Staffans(1997a)] that S > R+ D*D, and that S depends only
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on the weight R and the transfer function of the system, i.e., S is independent of
the particular realization A, B, and C. The physical interpretations of S and S are
identical [Malinen(1997), Staffans(1997b)].

Since the sensitivity operator S does not show up in the closed loop Lure and
Riccati equations, it is to be expected that these should still remain the same as in
the case of bounded control operator B and observation operator C. Indeed, this is
the case, as shown in [Staffans(1997a)].

The purpose of this paper is to present an example where the change from (1.11) to
(3.2) takes place. This example is a delay equation of difference type. It can be formu-
lated both as a discrete time system and as a continuous time system. In this example
the continuous time sensitivity operator S is the same as the discrete time sensitiv-
ity operator S, and the two Riccati equations (1.6) and (1.12) (with (R + D*D)™!
replaced by S~!) become more or less equivalent. We remark that this example has
been discovered independently by [Weiss and Weiss(1997)]. Some additional details
of this example are presented in [Staffans(1996a)] and [Weiss and Weiss(1997)].

Another example illuminating the difference between the two extensions of B*
used in [Staffans(1997b)] and [Flandoli et al.(1988)] is found in a recent preprint by
[Weiss and Zwart(1996)]. In that example D = 0 and C is bounded.

For completeness, let us point out the fact that the present theory says nothing
about the solvability of the system (1.9), (1.10), and (3.2): Is the solution unique,
and can these equations be used to actually compute II, K and S? In other words,
the converse part of the theory is still missing.

4. The Delay Equation
In the rest of this note we consider the following delay equation of difference type:
z(t) = Az(t — T) + Bu(t), t€[0,00),
(4.1) y(t) = Cz(t — T) + Du(t), te€[0,00),
z(t) = given, t=[-T,0).

Here u(t) € U, z(t) € H, y(t) € Y (all Hilbert spaces), and A, B, C, and D are
bounded linear operators between the appropriate spaces. For simplicity, we assume,
in addition, that the system (4.1) is exponentially stable, but this assumption can
be replaced by a stabilizability and detectability assumption. Moreover, we assume
that the data have been chosen in such a way that the discrete time Lure equations
(1.3)—(1.5) have a unique solution, with P positive definite and S strictly positive
definite, i.e., S > €I for some € > 0. The cost function W that we want to minimize
is given by (1.8).
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5. Two Discrete Time Formulations

It is easy to reformulate (4.1) as a discrete time system. This can even be done in
two conceptually different ways. In both cases we start with the observation that if
we define

un(t) = u(t +nT),
T, (t) = 2(t + (n — 1)T),
yn(t) = y(t +nT), n €N, tel0,T),

then (4.1) becomes

Tni1(t) = Az, (t) + Bu,(t),
(5.1) Yn(t) = Czn(t) + Dun(t), n €N, te[0,7),
xo(t) = given, tel0,T),

and the cost function W can be written in the form
7 (v + (), Ru(e)) de
52 = 32 ([ om0 + {10 ) )

n=0

W(l'o, u)

-[ (i (nlt), 9 (8)) + (), Run(t»)) dt.

The two different expressions given above for the cost function gives rise to two
different interpretations. In the first interpretation we take the input, state, and
output spaces to be

U=I*0,T;U), H =L*0,T; H), y=1IL*0,T;Y),

and we have a standard discrete time minimization problem.

In the second interpretation we observe that, for each fixed ¢ € [0,T), the sequences
£, (t) and y,,(t) depend only on zo(t) and u,(t), and not on zo(s) and u,(s) for s # t.
This means that the system (5.1) is really a collection of independent equations,
parametrized by the real parameter ¢ € [0,T). Moreover, it follows from the last
line in (5.2) that in order to minimize the total cost it suffices to minimize each
t-parametrized problem separately. Thus, in this interpretation, we have an infinite
number (parametrized by ¢ € [0,T')) of problems that are otherwise identical, but have
different initial states zg = zo(¢). Each subproblem is a discrete time minimization
problem of the type described in Section 1, with input space U, state space H, and
output space Y. Let us in the sequel denote the common optimal feedback and
Riccati operators for these subproblems by K and P, respectively. Then, for all
t € [0,7) and n € N, we have u'(t) = Kz%(t), or if we recall the definitions of
z,(t) and uy(t),

(5.3) wP(t) = KzP(t —T), t>0.
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Moreover, by (5.2), the total optimal cost will be

Wiao,u™) = [ W (o (), u () dt

0

(5.4) = [ tnle), Profe)) dt
- OT(m(t),Px(t)) .

6. A Continuous Time Formulation

Although the two discrete time formulations given above are very natural, the most
common approach is to formulate (4.1) as a continuous time problem rather than a
discrete time problem. Equation (4.1) is a special case of what is usually called a
“difference equation”; see [Hale(1977), Section 12.3]. The standard method to rewrite
this into a continuous time system is to solve (4.1) to get z, then to translate z to
the left, and to restrict 2 to [~T,0) to get a new initial function given on [—T,0)
for the same equation. In this setting the input, state, and output spaces become U,
H = L*(-T,0; H), and Y, respectively, and the state z(t) at time ¢ is given by

2(t)=(s—a(t+s), s€[-T,0).
The generator A of the semigroup that we get in this way is the differentiation
operator
(6.1) Az=2, dom(A) ={ze W™ (~T,0;H) | 2(0) = Az(-T) }.
Its adjoint is the differentiation operator
(6.2) Az=—2, dom(A")={z€W"(~T,0;H)|z(~T)=A"2(0) }.
The input and output operators B and C are unbounded, and they are defined through
the equations
(6.3) Bz = B*z(0) for z € dom{A"), Cz = Cz(-T) for z € dom(A).

The resulting system is well-posed and regular. For details, see [Staffans(1996b),

Theorem 6.1].
From the discussion in the previous section we know the optimal solution to the

quadratic cost minimization problem. By (5.3), u%(¢t) = Kz (t — T), hence the
continuous time state feedback operator K is unbounded, and it is given by

(6.4) Kz=Kz(-T), ze& dom(A),
and by (5.4), the continuous time Riccati operator is
(6.5) Pz= Pz, z¢I*-T,0;H).

We claim that P does not in general map dom(A) into dom(A*). This can be
seen as follows. By (6.1) and (6.2), P maps dom(A) into dom(A*) if and only if
P = A*PA. However, if this is the case, then we can iterate the equation P = A*PA
to get P = (A*)*PA* for every k € N, and letting k¥ — oo we find that P = 0. Thus,
the only case in which P maps dom(.A) into dom(A*) is when P = 0, i.e., the optimal
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cost is zero and also P = 0. In all other cases, in order to give a meaning to the
term A*P in (1.12) we have to extend the domain of B*. Since P maps dom(A) into
WL2(—T,0; H), it suffices to define B*z for all z € W?(—T,0; H) (see the discussion
in Section 2). Equation (6.3) does not define B* uniquely on W2(—T,0; H) since
dom(A*) is not dense in this space. The Weiss extension of B* (cf. (3.1)) is given by

(6.6) B'z = B*z(0),
for all z in WY2(-T,0; H).

7. Computation of the Operator S

Since we know P, we can compute S from (3.2). For each f € H = L*(-T,0; H)
and a € p(A) we have

(@1 -7 £) (@) = (1-eTA) " [ et p(pas— [ e f(s)ds.

By letting f tend to Bu = Byu (where & is the unit atom at zero) in the distribution
sense we get

(7.1) ((aI —A)™ Bu) (t) =e* (I — e“"TA)—l Bu,
hence, by (3.2) and (6.6),
Su=(R+ D*D)u+ lim BP (ol — A)™" Bu
— (R+D*Dju+ lim B°P (I —¢TA)" Bu
=(R+ D*D)u+ B*PBu = Su.
Thus S = S.

8. Verification of the Modified Continuous Time Lure Equations

Above we have solved the quadratic cost minimization problem for equation (1.1)
with cost function (1.2) by appealing to the discrete time theory. Here we shall show
that the continuous time feedback operator K and Riccati operator P satisfy (1.9)
and (1.10), where S is the operator that we computed above, i.e., S = S.

Let us start with the verification of (1.9). Take z € dom(A). By (6.4), Kz =
Kz(=T), and by (6.5) and (6.6),

(B"P + D*C)z = B*P2(0) + D*Cz(-T).
Replacing z(0) by Az(—T) we get

(B"P + D*C)z = (B*PA+ D*C)z(-T).
Thus, (1.9) follows from (1.3), (6.4), and the fact that S = S.
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It remains to verify (1.10). Take zg, 2, € dom(A). Since P maps W2(—T,0; H)
into itself we can integrate by parts to get

(Azo, Pz1) + (20, PAz)
= [} 440, )@ e+ [ Gzol0), (PO at
= (2(0), (P21)(0)) = (2o(=T), (P21 )(-T))

+ [ Gold), (PA)E) ~ (PY (0) de
= (Az(-T), PAz1(=T)) — 2o(—T) Pz (-T),

where the last equation follows from the facts that 20(0) = Az(—T), z(0) =
Az (-T), and (Pz)(t) = Pz(t). Thus

(Azo, Pz1) + (20, PAz1) = (2(=T), (A"PA— P)za(-T)) .
This equation, together with (1.4), (6.3), and (6.4), gives (1.10).
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The Wave Equation with Neuman Controls:
On Lions’s F' Space
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ABSTRACT. A crucial issue in boundary controllability problems for partial differential
equations is choosing the appropriate regularity for the space of controls. This space should
satisfy two criteria: it should be large enough, so that controllability is possible; and it
should be small enough, so that the initial regularity of solutions is preserved. Reconciling
these two opposite criteria is sometimes easy and sometimes very difficult. The aim of this
article is to provide a solution for this problem for the wave equation with Neuman controls.
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1. The controllability problem

We denote the coordinates in R x R™ by (zo = t,%1,...,%Z,). For convenience we
call ¢ the time coordinate and z the space coordinate. £ stands in the sequel for the
corresponding Fourier variable. Set

_19
]_iafllj.

Let 2 be a bounded set in R® with C? boundary 8. Then we use the notations (-, ),
respectively (-, -)s for the L? inner product in Q x [0, 7], respectively 8 x [0, 7.
Consider a second order hyperbolic partial differential operator

P(t, Z, D) = 6jajk6k

in Q x [0,7] so that the surfaces ¢ = const are space-like. The corresponding inho-
mogeneous Neuman problem is

Pu=0 in Q x [0,7],
du=g in 89 x [0, 77,
(1.1) u(0) = up in ,

Ouu(0) =u; in Q.
Here 3, is the conormal derivative with respect to the surfaces ¢ = const,

3,L = aOk (?k

*Research partially supported by NSF grant DMS9622942 and by an Alfred P. Sloan fellowship.
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280 The Wave Equation with Neuman Controls: On Lions’s F' Space

and 8, is the conormal derivative with respect to the lateral boundary o x [0, T],
8, = 1 a*o,

where v is the unit outer normal to 5.

If the coefficients are smooth then the homogeneous problem (i.e. with g = 0) is
well-posed in H*(Q) x H*~1(Q2) at least if —1/2 < s < 3/2. For other values of s one
cannot simply use the H® spaces and the appropriate compatibility conditions are
required on the boundary. If the coefficients of P are only C* then the homogeneous
problem is well-posed in H*(Q) x H*1() for 0 < s < 1.

Let T be an open subset of 8Q x [0,7]. Then the exact boundary controllability
problem with Neuman boundary controls localized in I' can be stated as follows:

Given any initial data (uo,u;) € H® x H*™! find a boundary control g € G,
supported in T', so that the solution u to (1.1) satisfies u(T) = O u(T) = 0.

The allowable range of s depends on the regularity of the coefficients (see the
comments above). Since the Neuman problem is backwards well-posed, one can also
start at time T with 0 Cauchy data, solve the equation backwards and try to find g
so that at time ¢ = 0 the Cauchy data is exactly (ug, u1).

The problem we are interested in here is that of the choice of the space of controls
G,. A good choice (see [4]) should have the following properties:

(C) G, should be large enough, so that controllability is possible.

(CR) G, should also be sufficiently small, so that the solutions to (1.1) stay in H*
between the times 0 and 7'

The usual choice in the literature is the obvious one, G, = H*. Under appropriate
assumptions on the coefficients and on the size of the set I' (see e.g. [2], [3], [1], [6])
this space is large enough to satisfy (C). However, if n > 1 then it fails to satisfy
(CR). Hence, one can infer that the good choice of G, is a space slightly smaller than
H*~1. The first idea one is tempted to try is to substitute H°~! by H¥™!, ¢ > s;
unfortunately, in this case (C) fails. The explanation is that in the hyperbolic region
of the cotangent bundle of the boundary (which correspond to the singularities that
hit the boundary transversally and are reflected) the microlocal H s=1 regularity for
functions in G¥ is the correct one; it is only in the glancing region (which corresponds
to singularities propagating in directions tangent to the boundary) that one needs
some better microlocal regularity for G* functions.

We conclude the discussion of the controllability problem with remarks about some
of its features which are only indirectly related to the problem considered here.

Remark 1.1. (On suitable geometric assumptions) Obtaining exact boundary control-
lability results requires certain assumptions on the geometry of the controlled region I’
relative to Q and on the regularity of the coefficients of the hyperbolic operator. The
two most important such sets of conditions are

i) The geometric optics condition (see [1]), based on the idea of propagating infor-
mation along rays. This requires any generalized bicharacteristic of P in Q x [0,T] to
kit T in a nondiffractive point. A nondiffractive point is a point where the ray would
leave the domain Q if there were no boundary.

ii) The pseudoconverity condition (see [7]), based on the idea of propagating in-
formation across pseudoconvex surfaces. This requires the ezistence of a strongly
pseudoconvex function ¢ in Q x [0,T] which is negative at times 0,T but positive
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at some intermediate time t and which satisfies 8,6 < 0 outside T'. (the result was
proved in [6] for the case when the control is taken on the entire boundary; to obtain
the more precise geometrical condition on I’ one needs to use more refined Carleman
estimates for solutions to boundary value problems as in [7].)

Remark 1.2. (The regularity of the coefficients) Well-posedness of the hyperbolic prob-
lem requires essentially C? coefficients. Many of the features of the problem depend on
this reqularity. The geometric optics method requires C* coefficients.. The Carleman
estimates method requires only C* coefficients. The range of admissible values for s
also depends on the regularity of the coefficients. For instance, with CY' coefficients
and the equation in divergence form the admissible range is 0 < s <1

2. Duality and the observability problem:
Consider now the dual homogeneous problem

P=0 in Q% [0,7,
o,v=0 in 0Q x [0,T],
v(0) = vg in Q,

0,v(0) =v; ing,

which is well-posed in the space H?(f) x HZ ().

To it we associate the stable observability problem

Given the observation v in a space F? = F{, determine the initial data (vo,v1) €
H?x HI7,

Now the question is how to choose the observation space F9. It should be small
enough, so that observability can hold; but it should also be large enough, so that it
contains v|r for any initial data (vo,v1) € H? x H9™!. This can be summarized in the
following two inequalities (O), which guarantees that stable observability holds, and
(OR), which gives the regularity of the observation.

(2.1)

0)  |wolg + |vifg—1 < efv|rg

(OR) volg + [vile—1 = elvlpe

The controllability and observability problems are dual. To make this more precise
start with the following integration by parts,

(2.2) (u, B,v) — (Byu,v) =0 = (u, Pv) — (v, Pu) + (v, 8,v)6 — (v,0,u)s

for any smooth functions u,v. Suppose now that u solves the inhomogeneous problem
(1.1) with zero Cauchy data at time T and that v solves the homogeneous problem
(2.1). Then (2.2) becomes

(2.3) {ug,v1) — (u1,vp) = —(g, v}

which is the duality relation which connects the controllability problem with the
corresponding observability problem. For the controllability problem one needs to
look at the map

T.G,(T) — H*Q) x HNQ), Tg = (u(0),8,u(0))
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(where u is assumed to solve (1.1) with 0 Cauchy data at time T'). Then the control-
lability and regularity statements {(C) and (CR) are equivalent to saying that 7' is a
surjective, respectively a bounded operator.

For the observability problem, on the other hand, consider the map

S Hq(Q) X Hq_l(Q) — Fq(F), T(’UO,'Ul) =Ur

(where v is assumed to solve (2.1)). Then (O) and (OR) are equivalent to saying
that S is bounded from below, respectively that S is bounded.

By (2.3) the duality S = T is achieved if we take ¢ +s = 1 and G, = Fj.
The controllability and regularity statements (C), (CR) are then equivalent to the
observability and regularity estimates (O), (OR). Hence, determining the correct
spaces G* for the boundary controls reduces to finding the appropriate spaces F for

controllability.
Lions’s idea is the following. Suppose we know the uniqueness result v = 0 in T’
implies vy = v; = 0. Then define the norm of the space F? exactly by

v £,y = |volg + |v1lg—1

Such a space will have the right properties, and its dual is the good space for con-
trollability.

Thus, it remains to characterize the space Fy. Intuitively, the dependence of the
F, norms on ¢ should be fairly simple. One would expect that Fy and F, differ by
exactly g — r derivatives, F, = D"F,. Then it is best to characterize Fy for a given
value of g. The simplest choice, which is used in the sequel, is ¢ = 1. Then we want
to identify the space F' = Fj, defined by

[v] 7 = volmr + va] 12

3. The F' space
Define the “tangential” component R of P on the boundary 09 x [0,T] by
Ru= Pu whenever d,u=08u=0
This is equivalent to saying that local coordinates can be chosen in which 9Q =
{z, =0} and
(3.1) p(z,€) =& —r(z,§) on{z, =0}
Since the boundary 89 x [0, 7] is time-like, it follows that R is also hyperbolic. If P

has C! coefficients then R also has C! coefficients.
Introduce now the spaces X*% associated to R by

Xs,O = H* Xs,l — {U c Hs; Ru € Hs—l} Xs,—l = H° -+ R*Hs+l
X =[x X%, 0<f<1 X59=[X*0 X", 0<6<1

(complex interpolation). These spaces are L? type Sobolev spaces which have a
special structure near the characteristic set of R. It is easier to understand these
spaces in the constant coefficient case. Then the above definitions are equivalent to

xo =l 1+ )0+ T e 12y
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One can see that the index s corresponds to classical derivatives, while the index
@ corresponds to “derivatives” away from the characteristic set of R. Such spaces
have been investigated in detail in [8]. By interpolation one can easily prove that
they have some good properties such as microlocalization and the expected mapping
properties for pseudodifferential operators and R:

(3.2) OPS™ . X0 — xs—m®

(3.3) R: X% — X101

On a bounded open set I' we define the X*Y space in the standard way, as the
restriction to I' of X*? functions.

Remark 3.1. If the coefficients of R are only C* then the X*? spaces are well-defined
and have the above properties only for |s| <1, |s — 0| < 1. This is exactly the range
which can be obtained by interpolation from the spaces X1, X%, H' and their duals.

Then our main result is

Theorem 3.1. Suppose that P has C* coefficients and that the boundary 8) is of class
C?. Assume that a suitable set of geometric assumptions (see Remark 1.1) is fulfilled.
Then the F norm is equivalent to the X/%Y/? norm.

Note that X% = .2 and
X" ={we H'| Rwe L%}

Hence, if we interpret R as a selfadjoint operator in L? then the space X/21/2 can
be locally characterized as

X212 _ gi/2 A D(R1/2)

This result leads to the following optimal choices for the observability and control-
lability problems:

Corollary 3.1. Suppose that P has C' coefficients and that the boundary 6 is of
class C?. Then the F, norm is equivalent to the X922 norm and the optimal
space of controls G is X°~1/271/2 0 < s,q < 1. If both the coefficients of P and the
boundary are smooth then the same result holds for all real s,q.

Before we prove the theorem, let us make one important observation. The F norm,
as we have defined it, applies only to traces of solutions to the Neuman problem, which
is not a dense set in any Sobolev space. Hence, there is definitely more than one norm
say, on smooth functions, which extends F. A striking example of that is given by
the following version of the above theorem:

Theorem 3.2. Suppose that P has C' coefficients and that the boundary O is of
class C?. Assume that a suitable set of geometric assumptions is fulfilled. Then the
F norm is equivalent to the H*/3 N X'/21/2 porm.
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The X1/21/2 gnd H?/3 N XY/21/2 norms are certainly not equivalent in general.
However, it turns out that they are equivalent on the function space where F is
defined.

Proof. We need to prove the following two estimates

(34) |’Uo|1 + l’Ullo < C|’U|X1/z,1/2(1—~)

(3.5) lvolt + |vilo = clv|g2rsnxir21r260x 0,0

The second one is a trace regularity result which was proved in [9]. The assumptions
in [9] are that the coefficients are sufficiently smooth. It now appears that the same
result holds even for C! coefficients; however, this will be proved elsewhere.

To give a complete proof to (3.4) we would need to redo the appropriate observabil-
ity estimates for various sets of geometric conditions (see e.g. [1],[6]). Fortunately,
in all these cases the boundary traces appear in the same way. The common compu-
tation done in all these works is local, near the observed part of the boundary T'. It
goes like this:

One starts with a quadratic form of the form (Pu, Qu), where @ is of order 1 and
is either a differential operator or an operator of the form

Q=QoDr+Ch

where Qp, Q; are tangential pseudodifferential operators of order 0, respectively 1,
with purely imaginary symbol. The main step is then to compute by integration by
parts (commuting)

2Re(Pv, Qu) = {Pv, Qu) + (Qu, Pv) = A(v,v) + B(v,v)

where A is an second order interior quadratic form and B is a second order boundary
quadratic form. A is then used to estimate the H ! interior norm of v, and B is
bounded by

B(’U, U) < C|U|%I1(F)

Our aim, therefore, is to refine this to
B(v,v) £ C|’U]§p/2,1/2

To do that, we need to determine what is B. It is easier to do that in local coordinates
where (3:1) holds. Then

P=D.—R, Q@=QoDn+Q
When we integrate by parts to commute P and ) we obtain
2Re(Pv, Qu) = interior terms + (Dypv,iQ1v)5 + (Dnv, iQoDnv)a + (iQov, Rv)s
Recalling the boundary condition D,v = 0 it follows that
B(v,v) = (iQov, Rv)a
By (3.2), (3.3) this can be bounded by

|B(v,v)| < c|Rv|x-1/2,-1/2|Qov| x1/21/2 < C|U|§{1/2,1/2

This concludes the proof. Note that the above argument requires only C" regularity
of the coefficients of P. O
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ABSTRACT. We consider an initial and boundary value problem the one dimensional wave
equation with damping concentrated at an interior point. Our main results assert that the
decay rate is uniform for regular initial data and give lower estimates of the decay rate. An
essential intermediate step is the description of the spectrum of the associate dissipative
operator.
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1. Introduction and statement of the main results

The main goal of the present paper is to study the asymptotic behaviour of solutions
for the following initial and boundary value problem:

(1.1) u’(z,t) — g—i%(x,t) +'(a,t)6, =0, Vz € (0,1), Vt € (0,00)
(1.2) w(0,£) = u(1,£) = 0, Vt € (0, 00)
(1.3) u(z,0) = u%(z), ¥'(z,0) = v'(z), Vz € (0,1),

where 8, is the Dirac mass concentrated in the point a € (0,1) and by ', u” we
denoted the time derivatives of u. Equations (1.1)—(1.3) are dissipative since

(1.4) E'(t) = —lv/(a, 1),
where E = E(t) is the energy

E(t) = %/01 [|u’(x,t)12+ %(m,t)‘ ] dz.

The main known results concerning the asymptotic behaviour of solutions of (1.1)-

(1.3) can be summarized as follows:

Theorem 1.1. 1. For any a € (0,1) the problem (1.1)-(1.3) admits a unique solution
U satisfying
u € C([0, 00), Hy(0,1)) N C*([0, 00), L*(0, 1)).
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288 On the Pointwise Stabilization of a String

2. The solution u of (1.1)-(1.3) has the decay property
(15) Jim (10l 0 + 190 2000) = 0.
if and only if

(1.6) ae(0,H)N(R-Q).

8. For any a satisfying (1.6) the decay of u to zero is not uniform in the energy
space. More precisely, for any function 9 : [0,00) — R with lim;_.c 9(t) = 0 there
exists a sequence (t,), t, — 0o and a solution uy of (1.1)-(1.3) such that

[ {uy (tn), uy (0n) }H 3 0,1)x 22000

> Y(t,), Yn > 1.
000,20 mzoyezzony 0

(1.7)

The results in Theorem 1.1 were essentially proved in [2] and [7]. However, for the
sake of completeness we shall sketch the proof in section 2.

In the present paper we shall prove that if we assume some additional smoothness of
the initial data we can achieve a definite rate of decay for the solutions of (1.1)-(1.3).
Moreover we shall show that the energy decays at most as a negative power of time.
In order to state the precise result we shall consider a subspace of H}(0,1) x L(0,1)
defined by

(18) D(A) =

= {(u,v) € [H}0,1)]*|u € H*(0,a) N H(a,1) Ou Ou

S (a+) — Sh(em) = v(a)h,
endowed with the norm

(1.9) 1w, )|y = 200 + lullbrzy + ol 0,)-

Our first result on the uniform decay of solutions of (1.1)-(1.3) is

Proposition 1.1. For any a satisfying (1.6) there ezists a function h, : [0,00) — R
with lim ho(t) = 0, such that the solution u of (1.1)-(1.3) satisfies

(1.10) [{u(®), 'O} m o<z < R, u')llow,
V(u®,u') € D(A), V¢ > 0.

Qur main result shows that for any irrational ¢ the function A, in Proposition 1.1
tends to zero at most as % More precisely we have

Theorem 1.2. For any a satisfying (1.6) there exists a sequence t, — o0 and a
sequence (uy,) of solution of (1.1)-(1.2) such that

Un(tn), u (t
\/t-n”{ n( n) (n)}“Hg(o,l)xLz(o,n —Ce (0,00).

(1.11) Jim

[{un(0), 4, (0)}pea)
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Moreover for any § > 0 there exists a constant a satisfying (1.6) such that

i s (), ) Hligopeaion
P {un0), ) o

for some u, and t, as above.

>0,

The plan of this paper is as follows: in the second section we prove some preliminary
results including Theorem 1.1; in the third section we prove the main results; we end
up with a section devoted to further comments and other related questions.

2. Wellposedness and strong stabilization results
We shall first study the wellposedness of (1.1)—(1.3) by using the theory of semi-

groups. With D(A) defined by (1.8) and X = H;(0,1) x L?(0,1) we consider the
operator A : D(A) — X defined by

. ALY = (i)

The wellposedness theorem for (1.1)-(1.3) will be a simple consequence of the follow-
ing result:

Lemma 2.1. The space D(A) is dense in X and —A is the generator of a continuous
semigroup of contractions in X.

Proof. The proof of the density of D(A) in X is a simple exercise so we shall skip it.
If we suppose that X is endowed with the scalar product

w f(uw)) _ [(dudu
(o) (), 0 (& o)

a simple calculation shows that

(A (‘5) , (Z))X = 2%(a) > 0,V (:j) € D(A),

so A is monotone. In order to prove that —A generates a semigroup of linear con-

tractions on X it suffices to show that A is onto, i.e. A(D(A)) = X. Let (;:) eX

and consider the equation

-0

which can be written as
(2.3) v=—f € Hy(0,1),
(2.4) _du +v(a)é, = h € L*(0,1).
dz? ’
From (2.3), (2.4) and a simple elliptic regularity result it follows that equation (2.2)

admits a unique solution Z € D(A), so A is onto. O
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In order to study the asymptotic behaviour of the solutions of (1.1)—(1.3) we shall
need the following compactness result.

Lemma 2.2. The space D(A) is compactly embedded in X and the operator A7 is
compact from X into X.

Proof. We first notice that A~! is a linear continuous isomorphism from X onto
D(A) and from L*(Q) x H71(Q) onto X. It suffices then to use the fact that X is
compactly embedded in L2(Q2) x H=*(Q). O

Proof of Theorem 1.1. In order to prove the first assertion it suffices to notice that
(1.1)—(1.3) can be written
!
049
u u
and to apply Lemma 2.1.

In order to prove (1.5) consider the problem

25) W' — % — 0, in (0,1) x (0,00)
(2.6) w(0,t) = w(l,t) =0, Vt € (0,00),
(2.7) w'(a,t) =0, V¢ € (0,00).

A simple Fourier expansion of w combined with the independence of complex expo-
nentials show that the only function w satisfying (2.5)-(2.7) is w = 0. By applying
a version of the invariance principle of LaSalle (cf.[3] and [4]) we obtain now that u
satisfies (1.5).

We still have to prove the third assertion of Theorem (1.1). We first notice that
if a is rational then A admits purely imaginary eigenvalues. If @ is irrational then
it can be approached by a sequence of rationals and one can show (see Lemma 3.1
below for details) that there exists a sequence u,, of eigenvalues of A such that

(2.8) Retn, — 0, ITm py, — 00.

Denote now by S(¢) the semigroup generated by A and by £(X, X) the space of
linear operators from X into X. Relation (2.8) implies the estimate

IS®| < Me™*, vt >0,
is false for any w, M > 0. It suffices now to apply a result from [9] to obtain assertion
3 of Theorem 1.1.
3. Decay estimates
In this section we shall prove Proposition 1.1 and Theorem 1.2.
Proof of Proposition 1.1. It suffices to show that
(3.1) lim [|S@)] coea.x) =0,

where S(t) is the semigroup generated by A and L(D(A), X) is the space of linear
bounded operators from D(A) into X. In this case estimate (1.10) holds true with
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ha(t) = ||S(¢)||l o4y, x)- Let us suppose that (3.1) is false, i.e. that there exists € > 0,
tn, — 0o and (U,) C D(A), [|Unllpay = 1 such that

(3.2) 1S Unllx > €, Vi > L.

As by Lemma, 2.2 D(A) is compactly embedded in X there exists a subsequence (U, )
of (U,) and U € X, U # 0 such that

(33) i U, — Ullx = 0.
As S(t) is a semigroup of contractions relation above and (3.3) imply that
(34) 1 [S(tn,)Un, — (kU lx = 0.
From (3.2) and (3.4) we obtain that

[ECRL PR

for k large enough, which obviously contradicts (1.5). O

An essential intermediate step in the proof of Theorem 1.2 is the study of the
eigenvalues and of the eigenvectors of the operator A : D(A) — HE(0,1) x L*(0,1),
where D(A) is defined by (1.8) and A is defined by (2.1). The eigenvectors and
eigenvalues of .4 are characterized by the following result:

Lemma 3.1. Ifa € (0,1), a ¢ Q then a complezx number X is an eigenvalue of A if
and only if A satisfies the equation

(3.5) 3 _ @2 _ p20h _ 2(1-a)h _

All the eigenvalues of A are simple and the eigenvector (31) corresponding to the

eigenvalue —X\ is given by

eAz _ e—)\w
m, O<a< a,
(3.6) oa(z) = Aa=1) _ g=Az-1) s Yalz) = —Ada(z).
a<z <l

AED) — g-AE-1)’

Proof. A simple calculation shows that relation

6)-6)

holds true if and only if

(3.7) Ya(z) = —Ada(z),
and
(3.8) —%(x) + M¢5(z) =0, z € (0,a) U (a,1),

(3.9) dr(at) = da(a—) = ¢a(a),
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Ay

dz ( —) = *)\45/\(@)7

1 —_
(3.10) 2 0t) -
(3.11) $2(0) = ¢a(1) =

If we suppose that ¢,(a) = 0 and we use that a ¢ Q relations (3.8)—(3.11) imply that
ér(z) =0, Vz € (0,1). This is why we shall admit that ¢;(a) = 1. From (3.8), (3.9),
(3.11) we can then obtain that ¢,y satisfy (3.6). Condition (3.10) (with ¢(a) =1)
implies now that A satisfies (3.5). O

We can give the main proof of this section.
Proof of Theorem 1.2. Let us make the notation

G(a,)\) =3 62)\ _ 620.)\ _ 62(1—0.))\,

with a satisfying (1.6) We first notice that the first assertion of Theorem 1.2 follows
from the existence of a sequence (z,) C C such that z, is an eigenvalue of A and

0 < Rez, < |Zmz,| — co. In this case the sequence of solutions of (1.1)-

TImzn|?’

(1.2) with initial data {¢,,(z),0} satisfies (1.11) with ¢, = |Zmz,|*>. By Lemma 3.1
a sequence (2,) satisfies conditions above if and only if

K
(3.12) Zp = Tp + Wn, Yn — 00, 0 < 2,y < 2 Gla, z,) = 0.
n
In order to prove the existence of a sequence (z,) satisfying (3.12) we first notice
that by Theorem 5 in [1] there exist two sequences (pr), (¢n) C Z such that
5__
q Pl Z—, ¥n2>1, g, = .
By Rouché’s theorem (cf. [10, p. 243]) it suffices to prove the existence of a constant
K > 0 such that

(3.13)

‘G(a,)\) X (a @) (A — gpmi)| <
(3.14) o
< 3N (CL anr’L)(/\ - qn'm;) , if I)‘ - Qnﬂ‘il =

We shall first estimate the left hand side of (3.14) by writing the Taylor expansion

G(a, ) — 8—G(a, gnmi) (X — guri) =

(3.15) 1 oma

= G(a, gami) + Z ol o o (@, gami) (A — gumi)™

Concerning the first term in the rlght hand side of (3.15) a simple calculation gives

= 4sin? [(a - %) qnﬂ} .
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By using (3.13) relation above implies the existence of n; > 0 such that

A 2
(3.16) IG(a, gnmi)| £ —5 B , Yn > n.
We shall now estimate the infinite sum in the right hand side of (3.15). We can easily
check that

(3.17) ?9)«" (a,)) = —2"[e? + a™e* + (1 — o)X=, Ym > 1,
which implies that
g)«" (a,gnmi)| < 3-2™, Vm > L.

K
If A — gomi| = Z inequality above implies the existence of ng > 0 such that

n

1 0™G
<
(3.18) :‘:‘2 il o (@ 4R gam)”
) 2K
<3(en —2q—I2<—1) zK Vn >n

By combining (3.15), (3.16) and (3.18) we obtain

oG 4?2 3K
. < -
(3.19) G(a, ) — (a @nmi) (A — gumi)| < 5 + yrr

K
Vn > max (nq,n2), |A— ¢ami| = Z
n

On the other hand from (3.17) it follows that

G a, qn’rrl) —211 +a62(a—§%)qn7ri + (1 _a)GQ(%—a)qnm‘] :

8)\(
96 o gm0 22 {1 200 (0 2) ] .

which implies that
From relation above and (3.13) we obtain the existence of n3 > 0 such that

2 ¥
n

' oG
. —-— ; — Y| >
(3.20) o )0 = )| >

K

Vn > ng, |A—gumi| = —.

4

Finally by combining (3.19) and (3.20) we obtain that (3.14) holds true for all K >
%’3, provided that n is large enough, so we obtain the first assertion of Theorem 1.2.
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Let us now suppose that § > 0. According to [14] we can find a € (0,1) which
is transcendental and such that there exist two sequences (p,), (¢.) C Z with (gn)
strictly increasing such that

n C
(3.21) P P )
q‘n qW,
By using (3.21) and the estimates already proved in the first part of this proof one
can easily show that the second assertion of 1.2 also holds true. O

4. Comments and related questions

The results in this paper can be generalized to the case of n-space dimensions, for
the following problem:

(4.1) v’ — Au+ g(u')6, =0, in Q x (0, 00)
(4.2) u =0, on I' x (0,00)

(4.3) u(z,0) = v’(z), ¥/(z,0) =u'(z), in Q,
where:

(a) € is an open bounded subset of R™ with regular boundary T'.
(b) v = dw, where w C @ C £ is an open set with regular boundary.
(c) é, is the Dirac mass concentrated on v and the function g : R — R is supposed
to be continuous and strictly monotone, with ¢g(0) = 0.
The two dimensional version of (4.1)-(4.3) was treated in [8] where it was proved
that the solutions decay to zero for almost all w C Q. In the same paper it was
proved that, in the one dimensional case, there exist a € (0, 1) such that the solution

of (1.1)—(1.3) goes to zero like \/%

A question related to the problem studied in this paper is the stabilization of elastic
plates by the use of piezoelectric actuators (see [5] for appropriate models and [11],
[12], [13] for the associated control problems). In this case new difficulties arise as
the control function is scalar valued, so one may hope that strong stabilization holds
only in the case of simple eigenvalues.

In general, the methods used in this paper apply for a large class of equations of
the form u” + Au + g(v')6, = 0 including the plate equation with various boundary
conditions.
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ABSTRACT. In this paper we consider distributed control of the system described by the
generalized Boussinesq equation

Ut = Ugy — (a(u) + umz)ma: + f

on the periodic domain S, the unit circle in the plane.

In the case of local control, if the control f is allowed to act on the whole domain S, it
is shown that the system is globally exactly controllable. In the case of local control where
the control f is only allowed to act on a sub-domain of S, we show that the same result
holds if the initial and terminal states have “small amplitude” in a.certain sense.
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1. Introduction

In the present work we consider distributed control of a class of equations which
may be described as being of generalized Boussinesq type. They have the general
form

(L.1) Upy — Uy = (a(U) — Ugz)zz + f

in which v = u(z,t), z, ¢ € R and the subscripts denote the corresponding partial
derivatives, a : R — R is a smooth function with a(0) = 0. The equation (1.1) is
a perturbation of the linear wave equation which takes into account effects of weak
nonlinearity and dispersion, and appears in the theory of nonlinear strings.

The classical Boussinesq equation is of the form

3
(12) Upg — Ugg T+ E(Uz)zz + DUpiry = 0,

and was derived by Boussinesq [2] in 1872 as a model for the propagation of small
amplitude, long waves on the surface of water. It possesses special, traveling-wave
solutions called solitary waves. Historically, Boussinesq’s theory [2] was the first
to give a satisfactory, scientific explanation of the phenomenon of solitary waves
described by Scott-Russell thirty years earlier. Depending on whether the coefficient
b in the equation (1.2) is positive or negative, the equation (1.1) is called the “good”
Boussinesq equation or the “bad” Boussinesq equation. The “bad” version is used
to describe a two-dimensional flow of a body of water over a flat bottom with air

Preceding Page Blank
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above the water, assuming that the water waves have small amplitudes and the
water is shallow. It also appeared in a posterior study of the Fermi-Pasta-Ulam (FPU)
problem, which was performed to show that the finiteness of the thermal conductivity
of an anharmonic lattice was related to nonlinear forces in the springs. However, the
“bad” Boussinesq equation is notorious for its initial value problem (IVP) being not
well-posed even locally (in time). Of the “bad” Boussinesq equation only solutions of
soliton type, which can be found using the inverse scattering method, are known. For
this reason, we only consider a generalized version of the “good” Boussinesq equation
(1.1).

Our main concern is the study of equation (1.1) from a control point of view. In
particular, we consider the equation posed on a periodic domain S, the unit circle in
the complex plane

(1.3) Ugp — Ugg = (a(U) — Ugz)zz + f, T ES, tER

with the forcing function f = f(z,t) as a control input. The goal is to influence the
system by choosing an appropriate input f.

The control theory of Boussinesg-type equations was initiated by Liu and Russell
[6], [7] and [8]. Both distributed control and boundary control of the Boussinesq
equation have been considered. Some dissipative mechanism is introduced into the
systems through appropriate feedback control laws. They showed that the small
amplitude solutions of the resulting closed loop system are then exponentially stable.

In this paper we consider the exact control problem: choose an appropriate control
input f(z,t) to guide the system described by (1.3), during time interval [0, 7], from
a given initial state to another preassigned terminal state in an appropriate function
space of system states.

Note that for an appropriately smooth solution u(xz,t) of the unforced equation
(f(z,t) = 0) it is easy to see that any smooth solution u satisfies

d
E/Sut(x,t)dx =0
for any ¢t € R. Therefore
/Sut(x,t) z/sut(x,O)d:c
and '
/Su(:c,t) =/Su(x,0)dx+t/5ut(x,0)da:

for any t € R. Usually one chooses the initial value u;(z,0) with fgu(x,0)dz = 0 (cf.
[1]) so that both [gu:(z,t)dzr and fsu(z,t)dz are conserved for the unforced system.
In order to keep these quantities conserved while conducting control we require that
the control input f in system (1.3) satisfies

(1.4) /Sf(x,t)da: =0, VteR.

A more interesting case is obtained if some further a priori restrictions are imposed
on the applied control f(z,t). Let us suppose that g(z) be a smooth function defined
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on S with its support contained in S satisfying

9] := /Sg(:v) dz =1

where [g] denotes the mean value of the function g over the circle S. We restrict our
attention to a control of the form

(1) £(@,8) = Gh = 9(@) (h(a,t) [ a0)hly, D).

Thus h(z,t) may be considered as a new control input. It is easy to check that

/Sf(x,t) =0

with f given by (1.5); therefore the restriction (1.4) is satisfied. Depending on the
support of the function g in the domain S, there are two different control situations.
If the support of g is the whole domain S then the control acts on the whole domain
and we refer to it as global control. If the support of the function g is a proper
subset of S, the control acts only on a sub-domain and we refer to it as local control.
Obviously we have more control power in the global control situation than in the
local control case. On the other hand, the local control situation includes more cases
of practical interests and is therefore more relevant in general.

Now we describe the main results of this paper. Let H*(S) (s > 0) be the space
of all functions of the form

0 .
v(z) =Y vee*”
-0

such that

oo 1/2
(1.6) {Z lukl? (1 + |k|)25} < +o00.
—0o0
The left hand side of (1.6) is a Hilbert norm for H*(S); we denote it by ||v||s.

For the control problem just introduced the ezact control problem consists in using
the indicated control function to guide the system, during [0, T], between a given pair
of initial states u(z,0) = ¢o(z) and u(x,0) = 1p(z) and a given pair.of terminal states
w(z,T) = ¢r(z) and u(z,T) = +¥r(z), in an appropriate function space of system
states, necessarily, in view of the conserving control actions under consideration, such
that

1.7 /S1/Jo(cz:)dsc = /SzﬁT(w)dx =0, /S¢0(x)dm = /S¢T(m)dx.
In the global control case, the control A acts on the whole domain S and we have
the following strong controllability result.

Theorem 1.1. Let T > 0 and s > 0 be given and assume that the function g in (1.5)
satisfies

(1.8) : lg(z)} > B >0, V;’II es-
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Then for any (¢o,%o), (br,r) € H*H(S) x H*(S) satisfying (1.7) there exists a
control function h € L*(0,T; H*(S) such that the equation

Ust — Ugg = (a(U) — Usz)za + Gh
has a solutionu € C([0,T]; H*2(S)) N CY([0, T}; H*(S)) satisfying
u(z,0) = do(x),  w(z,0) =1ho(z),
wz, T) = ¢r(z),  w(z,T)=1yr(z)
In other words, we have “global” exact controllability in the global control case.

In the local control case, the support of the function g may be a very small part of
the domain %S; thus our control power is quite limited. In this situation, we have the
following “local” exact controllability result.

Theorem 1.2. Let T > 0 and s > 0 be given. Then there exists a § > 0 such that for
any (o, ¥o), (¢r,%r) € HH(S) x H*(S) satisfying (1.7) and

ligollss2 + [lgrllssz <8, lIolls + llvbrlls <6,
there exists a control function h € L?(0,T; H*(S) such that the equation
Ugt — Uz = (0(U) — Usz)zz + Gh
has a solution u € C([0, T]; H**2(S)) N CY([0, T]; H*(S)) satisfying
u(z,0) = ¢o(z), ug(z, 0) = Yo(z),
wz,T) = ¢r(z),  w(@,T)=1vr(z)
The paper is organized as follows. In section 2, we consider well-posedness of

the initial value problem of the forced generalized Boussinesq equation posed on the
periodic domain S:

{%t'—uzzz(a(u)_uzz)wm+fy .’L‘ES,tER

w(z,0) = ¢(z), w(z,0) =p(x)
As it is known this is equivalent to considering periodic solutions of the equation posed
on R. The local well-posedness of this problem could be established either by Kato’s
semigroup approach (see Bona and Sack [1]) or by Bona and Smith’s regularization
approach (see Liu and Russell [7]). But in this paper we provide a direct and simpler
approach with the contraction principle. The advantage of this approach is that one
not only obtains the well-posedness of the problem but is also able to show that the
solution depends analytically on its initial data and the forcing term. It should be
pointed out that one only expects a local well-posedness result for the IVP (1.9).
Some solutions of the IVP (1.9) may blow up in finite time even though their initial
data and the forcing term are smooth (see [5]). In section 3, we conduct a spectral

analysis of the operator
0 1
A= ( 24 0 )

defined in the space X, = H*t2(S) x H*(S) for s > 0. We show that the operator A
is a discrete spectral operator and its eigenvectors form a Riesz basis of the space X

1.9)
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The result established in this section is the basis to obtain our main exact control-
lability results for the generalized Boussinesq equation (1.1). The proof of our main
results of this paper, Theorem 1 and Theorem 2, are provided in section 4. As in our
earlier joint paper with Russell [10] which dealt with the same control problem for
the Korteweg-de Vries equation, we consider first a linear system associated with the
nonlinear system (1.1):

{utt—um—i-umm:Gh, xGS’,tER

u(z,0) = ¢(z), w(z,0)=1(z)

We will show that the system is exactly controllable in the space H*t2(S) x H*(S) for
any s > 0. Moreover, we show that there exists a bounded linear operator Kr from
the initial /terminal state pair (¢o,%o), (¢7,%r), each in the space H*+2(S) x H*(S),
to the corresponding control h in the space L2([0,T]; H*(S)). Then the proofs of
Theorem 1.1 and Theorem 1.2 follow from the same argument used in [10].

(1.10)

2. Well-posedness

In this section we establish the well-posedness of the initial value problem of the
forcing general Boussinesq equation on a periodic domain S,

{ Ugg = Ugg — (A(W) + Usg)ze + f z€S, teR,

u(x> O) = ¢(.’E), ut(xa 0) = ":[}(m)a
via the contraction principle approach.

Theorem 2.1. Let s > 0 and T > 0 be given. Then for any ¢ € H*2(S), ¢ € H*(S)
and f € L}(0,T; H%(S)), there ezists a T* > 0, depending only on ||¢||s42, |¥]| and
| Fll 2o zre(s)) Such that the IVP (2.1) has a unique solution u € C([0, T*]; H**%(9))
with ug € C([0,T*]; H*(S)). In addition, the solution depends continuously on the
initial data ¢, ¥ and the forcing term f in the respective spaces.

(2.1)

Before we present the proof of the theorem, we rewrite (2.1) as the following equiv-
alent first order evolution equation

(2.2) %a=Aa+mm+@ (0) = o
where

L[ u _ 0 1
(2:3) “—(W)’ A"(%—%n)
and

(2.4) ﬂm:(w%m>’ 52(2» %=<Z>

For any s > 0 and T" > 0, let X, denote the Hilbert space
X, = H*2(S) x H*(S)
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equipped with the norm

., 1/2
lallx, = (lluall? + ez 2 + 0]2)
for any @ = ( Z ) € X,. In addition, let

Yr,s = C([0,T]; Xy)-

It is easy to see that the operator A is a linear operator from X, to X, with
D(A) = H*+*(S) x H*(S). Besides, the adjoint operator of A

A= —-A

The operator A generates an isomorphic group W (t) on the space X, for any s > 0
and the standard semigroup theory gives us the following estimates.

Proposition 2.1. Let T > 0 and s > 0 be given. There exists a constant ¢ > 0 such

that
(2.5) sup [[W(t)dllx, < [lllx,
te(0,T)
for any 4 € X, and
t - -
(2.6) sup || [ W(t—7)f(T)drllx, < clfllzromx.)

te(0,T) YO
for any f € L}0,T; Xa).
Using the notations we just introduced, Theorem 2.1 can be restated as follows:

Theorem 2.1. Let s > 0 and T > 0 be given. Then for any @y € X, and § €
LY(0,T; X,), there exists a T* > 0 depending only on ||Uo||x, and ||l|zr0r;x,) such
that the IVP (2.2) has a unique solution @ € Yp«, and the corresponding solution
map: (i, f) € X, x L1(0,T; Xs) — u € Yp , is continuous.

Proof of Theorem 2.1'.  Using the notation of the semigroup W(t) we may write
(2.2) in its integral form

27) a@:ww%+£ww—ﬂw@+mmm

It suggests us to consider the map I' defined on the space C[0,T;X,], for given
iy € X, and § € L}(0,1; X;), by

wm=wm%+£ww—ﬂw@+mmm

for any @ € X, 5 For M > 0 and T > 0, let St,a be a bounded subset of the space
Cl0,T; X

Spar = {ae O, T5 X.J; sup [lx, < M}-
te(0,T)
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Applying (2.5)—(2.6) yields that for any T > 0 there exists a constant ¢ > 0 such that

T
X +e /0 (I1F (@] x, + 9] x,)dr.

sup ||(t)||x, < cljtol
te(0,T)
Note that

IF@)x, = l(@@))ezlls, 159G Olx, = llgC, )5,
for any % € C[0,T; X;] and

[1(a(u))asls lla” (wyulls + lla’ (u)tzzlls
Bllullss2)llulls+2 < B(Elx,) 1] x.

where f(-) is a continuous monotone increasing function only depending on a. One
has that

sup, IT@llx, < cll@ollx. + Iflomrixs) +eTB( sup [[@#))llx, sup [[@(t)]x.-

<
<

te(0,T te(0,T) te(0,T)
Choose M and T™* such that

(2.8) M =2c(l|dol|x, + 1| fllz2075x4)) cT*B(2M) < 1/2.

Then

sup [0(#@)|lx, < M/2+ cI"B(M)M < M
te(0,7*)

for any ¥ € Sr+ m. In addition, for any 4, V' € Sy,

r@ - 1@ = | ‘Wit — ) (F(d) — F(5)) dr

and .
F@)— PE) = ([ ¢+ Ao - w)d\u—0))
0 zx
Thus
sup [IT(@) — F(#)llx, < ¢T"f( sup Ilﬁ+ tllx,) sup [|@—9]x,
te(0,7+) te(0,T™ te(o,T)
< cT*,B(ZM) sup
te(0,T"
< sup [j@- vllxs/Q
t€(0,T*)
So I' is a contraction in Sr« . Its fixed point is the desired solution. O

As an advantage of this contraction principle approach, one can show that the solu-
tion map is not only continuous but also infinitely many times Fréchet differentiable
if ¢ is & C* function and is analytic if a is a polynomial.

Corollary 2.1. If the function a is C*° smooth, then the solution map:
(o, f) € Xs x LN0,T; H(S)) — Yr,s

is C® smooth, i.e., it has any order of Fréchet derivatives. Furthermore, if a is a
polynomial, then the solution map is analytic.

Proof. see [11].
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3. Spectral analysis

In this section we conduct a spectral analysis of the operator A defined by (2.3).
The result obtained in this analysis will be the basis to transfer the exact control-
lability problem of the associated linear system (1.10) to a corresponding moment

problem.
1 0
E1,0:<0)) E2,0=(1>

Let us define
and
1 ikx
El,k:_(eo ), Eyy =

k2
for k=41, £2,.... An easy computation leads to

. 0 k2
A(Ey g, Eag) = (Brg, Bax)Xgx  with Xy = < —(}2+1) 0 > .

The matrix Y has the eigenvalues

Aot = iy/k2(k2 + 1)
A2 = —iy/k2(k2 + 1)

with the corresponding eigenvectors

o 1 - 1
(32) ek,l = ( Ak,l ) ’ ek,2 = ( /\k,g )
iz Rz

for k = £1,£2,.... In addition, Ag; = Age = 0 is also an eigenvalue with the
corresponding eigenvector

(3.1)

0

Thus

A(By g, Ba )€k, €k2) = (Eig, Eor)Sk(€k1, €r2)
(A (Brgs Eog)h1, Me2(Ev gy Eok)€h2)-

So Ag1 and Ay o are eigenvalues of the operator A with the corresponding eigenvectors

e = (Evks Bog)€k,1 o2 = (E1k, Eo k)€
for k=41, 42, .... In addition, Ay = 0 is the eigenvalue of the operator A with the
corresponding eigenvector
. 0
o = 1 .

Note that
1 1
M = (ex1,ex2) — ( i —i )
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as k — oo. Thus
lim det M = —2i # 0.

k—o0
Since {E1 4, Eax}, k=0,+1, £2,... form an orthogonal basis for the space X;, by
[3] we know that

{70, T, T2 b =%1, £2,...}
forms a Riesz basis for the space X;.
Note that A* = —A. The spectrum of A* consists of the eigenvalues po = Mg =0
and
Pkj = Mo = — Ak
for j = 1,2 and k = +1,£2,... with the corresponding eigenvectors 7 = 7o and
Ukj = Tk,;- Furthermore, we define

M = [|7e.4llx.
and X

Prj = TTh,j /M
for j=1,2and k = £1,42,.... Then

{0 =1, i =1,2and k=+1,%2,...}
forms an orthonormal basis for the space Xj:
o 1 ifk=m, j=1
(Prg» D) x, =

0 otherwise

The above discussion can be summarized as the following theorem.

Theorem 3.1. Let
iy/n%(n?+1) n=20,1,2,...,

Ap =
—iy/n2(n? +1) n=-1,-2,...
bn n=0,12,...
¢n,1 = .
(an’g n= —1,—2,-“3,...
and .
¢——n,1 n=0,1,2,...
¢n,2 =
hatp_n2 n=-1,-2,...
Then

(a) The spectrum of the operator A consists of eigenvalues {An}o2_o, in which
Ao is a simple eigenvalue with the corresponding eigenvector ¢o = ¢o1 = o2
and each X,, n = =x1,%2,... is a double eigenvalue with the corresponding
eigenvector ¢ 5, j = 1,2.
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) {do, Pnj, 3=1,2, n==%1,42,...} forms an orthonormal basis for the space
X, and any W € X, has the following Fourier series expansion:

+o00
T=oappo+ ., (n1Pn1+ An2dn2)
n=—00, #0
with oy =< W, ¢g >Xs; and
Qp1 =< 'LU, ¢n,1 >x,  Opa =< ’U_;, ¢n,2 > X,

forn==+1,£2, ...

4. Exact controllability

In this section we prove the main results of this paper. Following the argument in
[10] we first consider the corresponding linear control system

uttzuzz_uzzzz+Gh $€S, tER,
(@.1)
U(ZL‘, 0) = ¢($)’ ut(x; O) = ’lﬁ(fl?),

which can be written as the following abstract linear system

%4 — Aj+ Bh,
(4.2)
?7(0) =%

on the space X, where

-(2). m-(4)

with h € L%(0,T; H*(S)). The solution () of this system can be written as

£
(4.3) J(t) = W(t)j + /0 W (t — 7)Bh()dr.
Based on the spectral analysis of the operator A conducted earlier,

§(t) = eaggo + > e (A1 + U 2Pn2)
n#0

(4.4) ¢
+/0 e’\"(t_T)ﬁo(T)dT—I—

S [ D (Bua()us + Bnalrbna) dr
n#0

where ag = (%o, $o)x,, Bo = (Bh,¢o)x, and
Qnj = (H0; Prg)xer  Brj = (Bh,bnj)x, = (hy B ¢nj) ms(s)
for j =1,2 and n = +1,4+2,... Note that

(Bh,(fj))xs - << C?h),(;‘)>xs

= (h, GU)Hs(S).




Bing-Yu Zhang 307

Thus

(4.5) B* ( . ) = Gv € H*(S)

for any ( 111; ) € X,.
Let
X = {(y07yT) € X, x X, /S(yo)ldx = /S(?JT)2dx7 /S(yo)zdﬂc = /S(yT)gdx = 0}.

Here, (%); denotes the j—th component of ¥ (j = 1,2). We show that the linear
system (4.3) is exactly controllable. In fact we show that the following stronger result
holds which is the key for obtaining exact controllability of the nonlinear system.

Theorem 4.1. Let T' > 0 be given. There exists a bounded linear operator
Kp: X, — L*0,T; H*(S))
such that for any (o, ¥r) € X, the solution of
§(t) = Ag(t) + BKr(iho, 5r),  §(0) = To

satisfies

and
Lo . . 1/2
1Er(Go, 7| 2ozirecsy < er (IBollk, + 77l )
for some constant cy > 0 independent of (Yo, ¥r)-

Proof.  Since the system (4.3) is time reversible we may assume, without loss of
generality, that 77 = 0. Then the exact control problem, letting ¢t = T" in (4.4) and
#(T) = 0, consists of finding a h € L*(0,T; H*(S)) such that

(040 + TIBO)¢0 + Z e)\nT(anan,l + an,2¢n,2)
n#0

- 2)/ e T) 0,1 (T)Pn1 + Bn,2(T)dn,2) dT = 0.

This leads to the solvability of the following moment problem
= JE T, (1)dr,

oo +TB =0,
—en an2_ T () ,@nQ()

for n = +1,42,... Here (¢, ;)2 denotes the second component of ¢, ; and according
to the previous computation

bee*®  ifj=1
(¢nj)2 = ,
be e ifj=2.
where 0 < m < |b| < M for any k.
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By denoting pj, = &M, P = {pr | — 00 < k < oo} forms a Riesz basis for its closed
span, Pr in L%(0,T) (see [4]). We let £ = {gx | — 00 < k < oo} be the unique dual
Riesz basis for P in Pr, i.e., the functions in £ are the unique elements of Pr such
that

T
(4.6) /0 aOpe@dt = 6,  —o00 <1, k < oo.
We take the control h in (4.3) to have the form
(4.7) h(z,t) = coao(t) + D_ au(t) (@ 1G((1,1)2) + c2G((¢12)2)
10

where the coefficients co, ¢;1 and ¢, 2 are to be determined so that, among other things,
the series (4.7) is appropriately convergent. Substituting (4.7) into (4.4) yields, by
using the biorthogonality (4.6), that we have ag = ¢y < G(¢o), G{do) >x, and

e T a1 =n1(G(#n,1)2, G(@n1)2) Ho(5) +Cn2(G (¢n,1)27G(¢n,2)2)H5(5)
e {e“’\"TOtn,1 = 1(G(@n,2)2, G(Pn,1)2) Ho(5)FCn,2(G(Pn,2)2, G(Dn2)2) Ho(5)
for m = 1,42, ... Let
(G($n1)2: G(Bn1)2)ms(s) (G(Pn1)2G(Bn2)2)me(s)
(G(#n2)2, G(@n1)2)me(s) (G(Pn2)2G(Pn2)2)me(s)

= [1G(n)2l21C(@n2)all2 = [(G($n1)2, Gn2)ae s)|

Note that A, # 0 for any n since G(¢n2)2 and G(¢, 1)z are linearly independent.
In addition, as n — 00, (G(@n,1)2, G(¢n2)ms(sy — 0 and ||G(¢n;)2||* ~ b, 7 = 1,2.
Hence there exists a € > 0 such that

A, =

|An| > €

for any n and ¢, 1 and ¢, 2 are uniquely determined by (4.8). By Cramer’s rule,

_ An,l _ An’Q
(49) Cn1 = An 3 cn,2 - An
with
el any (G(Bn1)2G(bn2)e)ms(s)
An,l =
ey (G(#n,2)2G(bn2)2) s (s)
and
(G(¢n1)2, G(Pnp)2)mes) € Toma
An,2 =
(G(bn2)2, G(Pn1)2)mo(s) €T an2

It remains to show that h defined by (4.7) and (4.9) € L?([0,T); H*(S). It follows
from the same argument as in the proof of Theorem 1.1 in [10] and is therefore
omitted here. The proof is complete. |
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Now we turn to the nonlinear system

{ Ugg — Uy = (A(Y) — Usg)zz + Gh

u(z,0) = ¢(z), wu(z,0) =1p(z)
and prove the main results of this paper.

Proof of Theorem 1.1. According to Theorem 4.1, there exists hy € L2(0,T; H*(S))
for which one may find u € C([0, T); H**(S)) N C([0, T); H*(S)) satisfying

Ugp — Upg + Uggze = Ghla

(4.10)

U(Z‘,O) = ¢0($), ut(x70) = "z[}O(x)y

w(z,T) = ¢r(z), w(z,T)=br(z)

for given (¢, %0) and (¢, r) in the space X,. Adding —a(u)s, to both sides of the
above equation one obtains

Ugt — Ugy — (a(u))zz + Ugzgr = Ghy — a(u)zz:
’U/(Z', 0) = ¢0($)a ut(xy 0) = 'Lpﬂ(x)a
u(z,T) = ¢pr(z), w(z,T)=v¢r(z)
Thus it suffices to show that there exists hy € C([0,T]; H*(S)) such that

(Gha)(@,t) = —(a(u))es-

Note that a(t)ze = @' (W)ue + a” (w)u2 € C([0,T]; H*(S)) since a is a smooth func-
tion and u € C([0, T]; H*™(S)). The existence of hy follows from exactly the same
argument as in the proof of [10, Theorem 1.1]. The proof is complete. O

Proof of Theorem 1.2. We first write (4.10) as the first order evolution system
% = Aii+ F(@) + Bh,
which can be rewritten in its equivalent integral equation form
(4.11) (t) = W(t)u, + /Ot Wt — 7)(Bh((T) + /Ot W (t — 7)F(@)(r)dr.
We define ,
W(T, @) = /0 W(T — 7)F(@)(r)dr.

According to Theorem 4.1, for given iy, Ur € &, if one chooses

h = Kr(tp, Uy + w(T, @))
in equation (4.11), then

(t) = W(t)do + /0 "Wt — 1) (BKr(io, ity + w(T, 8))(7)dr + /0 ‘Wit — o) F(i)(r)dr
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and @(0) = @y, w(T) = dr by virtue of the definition of the operator Kr. This
suggests that we consider the map

L&) = W(t)dp+ /Ot W (t — 7)(BKr(ty, Ur +w(T, @))(r)dr + /Ot W(t — 7)F(a)(r)dr.

If the map T is shown to be a contraction in an appropriate space, then its fixed
point @ is a solution of (4.11) with h = Kr(t, é@r + w(T, @) and satisfies @(T) = .
An argument similar to the proof of Theorem 2.1 in section 2 shows that the map I'
is a contraction in the space X,. The only modification one needs is that instead of
choosing a small T', one chooses a small § > 0 and requires

ltollx, <6, ll@r|x, <6

so that the map I' becomes a contraction (see also [11]). The proof is complete.
]
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